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A B S T R A C T   

In this paper, a modified active tuned inerter damper concept which is more suitable for practical 
applications is proposed. The proposed device is composed of a pair of collocated reactive 
actuator and force sensor. A second-order low-pass filter and a proportional term are combined to 
form the controller. The equivalent mechanical model of the controller’s components is derived in 
order to better interpret the coupled system. The second-order low-pass filter is mechanically 
equivalent to a pure mechanical network which comprises an inerter, a spring and a damper 
connected in parallel. The proportional term mechanically represents a spring which is connected 
in series with the inherent actuator spring. Simple regressions are derived based on the ℍ∞ 
optimisation criterion wherein the optimal feedback gains are calculated to minimise the 
maximal response of the driving-point receptance of the system. The numerical study is also 
experimentally validated. The obtained results are found to correspond well with the theoretical 
developments.   

1. Introduction 

Lightweight materials and monolithic design concepts have been more and more employed in the new designs of structures for the 
sake of reduction of environmental pollution and ultra-performance [1,2]. However, this will often make these structures 
lightly-damped and thus more prone to vibrations, which could cause many problems such as reduction in structural integrity, 
compromise of instrument functionality and even threat to human lives. In this regard, proper damping techniques need to be 
considered in parallel with the future design of lightweight structures. Vibration absorbers, especially tuned mass dampers (TMDs) are 
often used for such purpose [3–7]. A TMD typically consists of a proof mass and a spring-dashpot pair added to the primary structure as 
an auxiliary system [8]. Once it is properly tuned, the vibration energy of the primary structure can be quickly transferred to the TMD 
where it is eventually dissipated. The damping effectiveness is known to ultimately depend on the weight of its proof mass, where 
better control performance comes with a heavier proof mass. However, the added mass may be penalising in lightweight applications. 

One interesting solution to address this trade-off is to use inerters. An inerter is defined as a one-port mechanical element which 
impedes the relative acceleration across its terminals [9,10]. Inerters became more and more attractive in the field of mechanical 
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vibration suppression because their inertance (representing the impedance coefficient in kilograms) can be significantly greater than 
their actual mass [9]. This interesting feature inspired many new design concepts aiming to outperform traditional TMDs. These 
include tuned inerter-damper (TID) which is similar to TMD but using inerters to replace the proof mass of TMDs, and tuned 
mass-damper-inerter (TMDI) which directly integrates inerters into TMDs [11–13]. For these systems, the actual mass is lower than the 
effective proof mass added to a primary structure, thus boosting the vibration mitigation performance while preserving the lightweight 
feature of the vibration absorber. 

Inerters have also been found to be useful for active vibration absorbers [14,15]. For example, Zilletti [16] proposed to include an 
inerter in parallel with the suspension system of the active vibration absorber with the aim to reduce the natural frequency of the active 
device without overly increasing the actual weight. Consequently, this improves the stability margin and the control bandwidth of the 
traditional active vibration absorbers. Alujevic et al. [17] investigated the potential of a novel inerter-based active vibration isolation 
system. The authors have shown that adding the inerter into the isolator can effectively stabilise the conditionally stable control loop 
thus allowing to further increase the loop gain. 

Although these inerter based designs are promising, it is quite challenging to realise them in practice because some imperfections 
during the mechanical construction will be inevitably present, preventing them to act as idealised inerters. For instance, the perfor
mance of ball-screw and rack-pinion inerters may degrade because of the friction and backlash or elastic effect of gears and screws 
[18], and hydraulic inerters may exhibit nonlinear damping in addition to the inertance-like behaviour [19]. 

In order to bypass the problems associated with physical inerters, the potential of active inerter-based vibration absorbers was 
investigated. It was reported that active inerter-based vibration absorbers can be implemented by a pair of collocated reactive actuator 
and force sensor. By feeding back the output of the force sensor through a resonant controller [20] or a sum of single and double 
integrators [21–23] to drive the actuator, the inerter can be synthetised, resulting in systems equivalent to mechanical networks 
composed of a spring, dashpot and inerter connected in parallel or in series, respectively. However, the experimental validation is not 
yet available, and it still remains challenging to achieve an acceptable control performance when targeting for high-order modes of the 

Fig. 1. (a) The schematics of the system under investigation, (b) the equivalent mechanical model (practical ATID-S), (c) the ideal ATID-S and (d) 
the ATID-P. 
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primary structure. This is because the dynamic stiffness ratio between the actuator and the primary structure ultimately determines the 
achievable control performance of these strategies and this ratio decreases at high frequencies. 

The focus of this study is thus twofold: (1) to develop a modified force feedback controller which allows to further boost the control 
performance and (2) to experimentally investigate the potential of the proposed controller. The proposed controller is built upon our 
previous developments [23]. A proportional term is added to the original controller which opens the possibility to tune the effective 
stiffness of the actuator. On top of this, a simple second-order low-pass filter is used to replace the pure integrators in the original 
controller which helps suppress the very pronounced saturation problems for example caused by the low-frequency drift of the in
strument in practical applications. The ℍ∞ optimisation criterion is utilised to calculate the optimal parameters of the proposed 
controller and a fitting technique is employed to establish the dependence of the control parameters on the fixed system parameters. 
The mechanical equivalence of the components in the proposed controller is also explicitly discussed in order to provide more physical 
insights. Experimental validations are provided which verify the theoretical analysis. The presented experimental work also aims to 
pave the way for the examination of previous analytical works on active nonlinear inerter-based dampers [24,25]. 

The paper is structured into four sections. In the Section 2, the mathematical models are presented, based on which the optimal 
feedback gains for implementing the controller are derived. In Section 3, experimental results are presented for the validation of the 
numerical study. The conclusions are drawn in Section 4. 

2. Mathematical modelling and parameter optimisation 

2.1. Mathematical modelling 

The system under investigation is shown in Fig. 1 (a). It represents an undamped single-degree-of-freedom (SDOF) system which is 
equipped with a massless actuator whose stiffness is denoted by ka. The SDOF system is defined through the mass m1 and the sus
pension stiffness k1. It is excited by a disturbance force F. A collocated force sensor which measures the transmission force Fs is installed 
between the actuator and the primary structure. The control loop is implemented by feeding the output of the force sensor Fs through a 
controller u(Fs) to drive the actuator. 

The governing equations of the coupled system can be written as: 

m1ẍ(t) + k1x(t) = F(t) + Fs(t) (1)  

Fs(t) = u(Fs(t)) − kax(t) (2) 

An active inerter-damper control concept was proposed in the previous study [23], where the controller u(Fs) = − gs
∫ t

0 Fs(t)dt −
gd

∫ t
0

∫ t
0 Fs(t)dtdt is used. However, pure integrators cannot be applied in practice for control in some cases as they might lead to 

saturation problems due to the undesirable amplification of the control signal at low frequencies. Thus, the controller u(Fs(t)) is 
modified as: 

u(Fs(t)) = − gsL1(Fs(t)) − gdL2(Fs(t)) − g0Fs(t) (3)  

where L1(•) and L2(•) represent a first and a second order low-pass filter, respectively. gs, gd and g0 are the control gains. 
Transforming Eq. (3) into Laplace domain, one obtains: 

U(Fs(s)) = − gs
Fs(s)
s + a

− gd
Fs(s)

(s + a)2 − g0Fs(s) (4)  

where a is the corner frequency of the low-pass filters and s represents the Laplace variable. 
Compared with the controller studied in Zhao et al. [23], the single and double integrators are now replaced by first and second 

order low-pass filters, respectively. In this way, the saturation problems can be limited. The proportional term in Eq. (4) is introduced 
in order to be able to tune the effective stiffness of the actuator. This can be better understood from a pure mechanical point of view. 
The equivalent mechanical representation of the considered system is shown in Fig. 1 (b). The proof is provided in Appendix A. As can 
be seen, the control effect of the proportional term g0Fs(s) is equivalent to placing a spring in series with the inherent spring of the 
actuator. Combining them, the effective stiffness of the actuator, denoted by k′

a, can be derived: 

k′

a =
ka

1 + g0
(5) 

When the gain g0 is positive, the equivalent stiffness k′

a is reduced as two positive springs are connected in series. On the other hand, 
k′

a is increased assuming − 1 < g0 < 0, which actually favours the vibration mitigation performance as demonstrated in Zhao et al. 
[23]. The underlying idea is similar to the concept of shunting negative capacitors to piezoelectric elements, thanks to which the 
generalised electromechanical coupling factor can be boosted leading to a better vibration mitigation performance [26–29]. 

As can be also seen in Fig. 1 (b), the use of the first-order and second-order low-pass filters introduces a spring kd and a pair of spring 
and dashpot kmand dmin addition to the desired dashpot da and inerter ma. Although the saturation problems can be suppressed by the 
proposed controller, the complexity on the control parameter optimisation is increased. 

The equivalent damping coefficient dm and da, the inertance ma and the stiffness kd, kmand k0can be linked with the control pa
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rameters according to: 

da =
ka

gs
, dm =

2aka

gd
,ma =

ka

gd
, kd =

aka

gs
, km =

a2ka

gd
, k0 =

ka

g0
(6) 

Note that the corner frequency related parameters kd, km and dm go to zero when the corner frequency a is set to zero. 
In order to come to a more general formulation, the following parameters: 

τ = ω1t, x1 = x, x2 = Fs/k1, xd = F/k1, ω1 =
̅̅̅̅̅̅̅̅̅̅̅̅
k1/m1

√
,

Ωc =
a

ω1
, μ =

ka

(1 + g0)k1
, gdn =

gd

(1 + g0)ω1
2, gsn =

gs

(1 + g0)ω1

(7)  

are introduced to normalise the system governing Eqs. (1) and (2): 

ẍ1 + x1 − x2 = xd (8)  

ẍ2 + (2Ωc + gsn)ẋ2 +
(
Ωc

2 + gdn + gsnΩc
)
x2 + μ

(

ẍ1 + 2Ωcẋ1 +Ωc
2x1

)

= 0 (9)  

where the derivatives are calculated with respect to the time scale τ as defined in Eq. (7). 
Considering now the pure integrators are used i.e. Ωc is set to zero in Eq. (9), the corresponding schematic of the equivalent 

mechanical model can be derived as shown in Fig. 1 (c) which actually represents a TID with its components connected in series. In 
practical applications, low-pass filters have to be used to replace the pure integrators. The corner frequency of the low-pass filters is 
often configured relatively low compared with the resonance to be damped. This makes the extra components related to the corner 
frequency of the low-pass filters vaguely present in the network. Thus, the whole network still behaves as its ideal case i.e. an ATID. 
Based upon this, the abbreviation ATID-S is chosen to address the schematic shown in Fig. 1(b). ‘S’ in this case is referred to as a serial 
connection of the inerter and the dashpot. 

As stated earlier, a second-order low-pass filter already introduces an additional pair of spring and dashpot. It was found that the 
inclusion of a first-order low-pass filter exhibits no better results than a second-order low-pass filter alone in terms of the control 
performance as shown later in Fig. 5 and the stability concern as discussed in Appendix B. Therefore, the term associated with gsn is 
eliminated from the controller in Eq. (9) which then becomes: 

ẍ2 + 2Ωcẋ2 +
(
Ωc

2 + gdn
)
x2 + μ

(

ẍ1 + 2Ωcẋ1 +Ωc
2x1

)

= 0 (10) 

In such a scenario, the corresponding equivalent mechanical network, as shown in Fig. 1 (d), essentially becomes a parallel 
connection of an inerter, dashpot and spring (induced by the second-order low-pass filter) which is then connected in series with 
another spring (corresponding to the proportional term). This modified controller is referred to as ATID-P which stands for an active 
tuned inerter damper in which the inerter, the spring and the dashpot are connected in parallel. 

2.2. Parameters optimisation 

The ℍ∞ norm is employed to optimise the control parameters of the proposed controller. The magnitude of the normalised driving- 
point receptance |x1 /xd| is taken as the performance index. 

The normalised driving-point receptance of the primary structure can be derived according to Eqs. (8) and (9): 

x1

xd
=

S2 + 2ΩcS + Ωc
2 + gdn

S4 + 2ΩcS3 +
(
1 + Ωc

2 + gdn + μ
)
S2 + 2Ωc(μ + 1)S + Ωc

2(μ + 1) + gdn
(11)  

and its magnitude is given as: 

⃒
⃒
⃒
⃒
x1

xd

⃒
⃒
⃒
⃒ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ω4 +
(
2Ωc

2 − 2gdn
)
Ω2 +

(
Ωc

2 + gdn
)2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2μ
(
Ω2 − 1

)( (
Ω2 − Ωc

2)gdn −
(
Ω2 + Ωc

2)( Ω2 + Ωc
2))+

(
Ω2 − 1

)2C + D
√ (12)  

where C = (gdn)
2
+ ( − 2Ω2 + 2Ωc

2)gdn + (Ω2 + Ωc
2)

2, S = s/ω1is the normalised Laplace variable,Ω = S /j is the normalised fre
quency and D = (Ω2 + Ωc

2)
2μ2. 

The optimisation parameters could in principle be any of the three in Eq. (12), but the stiffness ratio μ is often constrained by the 
requirements on the change of the structure’s dynamics due to the installation of the active damping device and is thus considered as 
fixed. Therefore, the remaining optimisation parameters are the normalised feedback gains gdn and the cut-off frequency Ωc. Because 
explicit expressions for their optimal values are very complicated to obtain, a numerical ℍ∞ optimisation (a gradient-based method 
implemented in MATLAB function fminsearch) is performed instead where optimal values of gdn and Ωc are sought to minimise the 
resonance peaks for a fixed stiffness ratio μ. This procedure is repeated for a large variation of μ (0 < μ ≤ 1.5) and then a fitting 
technique is employed to establish the dependence of gdn and Ωc on μ. It turns out that the following regressions provide an excellent 
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approximation to the numerical results: 

gopt
dn = 1 + 0.62μ (13)  

Ωopt
c = 0.02 + 0.73μ0.6 − 0.1μ (14) 

The goodness of the fitting is given in Table 1 in terms of R-squared and root-mean-square (RMS) relative error. 
In the following, numerical simulations are performed to illustrate the control effectiveness and also to examine the tuning law 

derived in Eqs. (13) and (14). For this numerical study, the stiffness ratio μ is fixed to 0.3 and the proportional feedback gain g0 is set to 
zero. Fig. 2 (a) compares the performance index |x1 /xd| for four different combinations of the control parameters: (i) gdn = 0 (control is 
off); (ii) gdn = gopt

dn and Ωc = 2Ωopt
c ; iii) gdn = gopt

dn and Ωc = Ωopt
c and iv) gdn = gopt

dn and Ωc = 0.5Ωopt
c , whereas Fig. 2 (b) shows the effect 

when the other parameter gdn deviates from its optimal value by a factor of 2 and 0.5, considering Ωc = Ωopt
c . It can be seen that two 

peaks with equal amplitude are obtained in accordance with the ℍ∞ criterion only when the optimal setting is applied. It is also 
interesting to note that the DC gain of the performance index i.e. the equivalent static stiffness of the system is dependent on the control 
parameters. This can be explained with the aid of the equivalent mechanical network shown in Fig. 1 (b). At low frequencies, the ATID- 
P (assuming g0 = 0) essentially behaves as a spring whose stiffness is km = a2ka /gd in Eq. (6). When gdn is set to zero (control is off), the 
corresponding stiffness km approaches infinity so that ka represents the whole branch. In such a case, the static stiffness of the system 
becomes the sum of ka and k1. On the other hand, if gdn is non-zero, km is finite. This makes the overall stiffness of the ATID-P branch 
lower than either of the two stiffness ka or km since they are connected in series. Thus, the system becomes softer compared to the case 
when gdn is set to zero. 

Although the stability of the ATID-P is guaranteed because of its full analogy with a mechanical network (given idealised force 
sensors and actuators are employed and g0 > − 1), it is not clear what is the phase margin of this active system when the optimal 
feedback gains are implemented. In what follows, the open-loop gain of the active system L = G(jΩ)H(jΩ) is derived to study phase 
margin. G(jΩ) and H(jΩ)represent the normalised frequency response of the control plant and controller, respectively. They are 
expressed as: 

G(jΩ) =
1 − Ω2

(
1 − Ω2 + μ

)
(1 + g0)

(15)  

H(jΩ) =
gdn(1 + g0)

(
Ωc

2 − Ω2 + 2ΩΩcj
) (16) 

Table 1 
Goodness of fitting.  

Parameters R-Squared RMS relative error 
gopt

dn  
1 3.5× 10− 4  

Ωopt
c  0.9999 1.8× 10− 3   

Fig. 2. The performance index against normalised frequency for different (a) cut-off frequencies and (b) feedback gains where the stiffness ratio μ 
= 0.3 is chosen. 
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In practice, the ATID-P is implemented in a cascade way. The control plant G in Eq. (15) actually represents the transfer function 
between the output of the force sensor and the input to the actuator when the control loop with the proportional term is closed, 
whereas H in Eq. (16) stands for the second-order low-pass filter left in the cascaded controller. This treatment makes sense since the 
optimal settings of gdn and ωc in the second-order low-pass filter are derived provided that g0 is fixed i.e. the proportional control loop is 
already closed. The phase margin of the optimally configured ATID-P is calculated in three steps: i) identification of the unit gain 
frequency Ωc at which the amplitude of the loop gain L(jΩ) equals to unity; ii) calculation of the phase angle of the loop gain at Ωc i.e. 
∠L(jΩc) and iii) calculation of the phase margin as PM = π + L(jΩc). 

Fig. 3 plots the phase margin of the coupled system against the stiffness ratio μ when the optimal control parameters are applied. It 
can be seen that the phase margin increases with an increase in μ. In order to achieve a phase margin greater than 35◦, the stiffness of 
the actuator has to be at least greater than half of the primary system’s stiffness. With the proposed ATID-P, the stiffness ratio μ can be 
effectively adjusted by changing the proportional feedback gain g0 according to Eq. (7). For example, a large value of μ can be obtained 
when g0 falls in the range (− 1, 0] where μ increases as g0 approaches -1. According to Eq. (15), the effective stiffness ratio μ can be 
estimated in practice by: 

μ =

(
ωp

ωz

)2

− 1 = Ωp
2 − 1 (17)  

where ωp and ωz correspond to the frequencies of the pole and the zero of the control plant respectively, and Ωpis the normalised 
frequency of the pole. 

In the following, the controller effectiveness of the proportional term is illustrated. Fig. 4 (a) compares the control plant of the 
considered system when the gain g0 is set to 0, -0.5 and -0.786, respectively. The effective stiffness ratio μ for these values of g0 can be 
calculated based on Eq. (7) and equals 0.3, 0.6 and 1.41. As shown, there exists a pair of complex zeros and a pair of complex poles in 
the control plant for each scenario. The location of the zeros is invariant with respect to the gain g0 since it is solely determined by the 
resonance frequency of the primary structure when the actuator is removed. On the other hand, the location of the poles shifts 
rightwards when g0 moves towards to -1. In addition, the magnitude of the control plant is amplified by a factor of 1 /(1 + g0). In [30], 
a proportional controller is also considered in order to boost the control performance of integral force feedback controllers. It is 
implemented as a feedforward term which consequently shifts the zero frequency leftwards while the location of the poles is kept fixed. 
With the proposed feedback approach, it is opposite i.e. the zero is fixed but the pole increases when increasing the gain g0. 

Fig. 4 (b) plots the open-loop gain of the system for the three values of g0. The loop gain decreases with a decrease of g0 (an increase 
of μ) in the low frequency range. This means that the transmission force at low frequency is less affected when the control is activated. 
As a consequence, the softening effect induced by the integral force feedback [31,32] becomes less pronounced. In addition, the unit 
gain frequency at which the phase is smallest increases with a decrease of g0. This leads to a greater phase margin which is consistent 
with the phase margin plot in Fig. 3. 

Fig. 4 (c) depicts the performance index for the same variation of g0. The peak values indeed decrease and the static stiffness of the 
system is less influenced as g0 approaches -1. It is also interesting to note that the equal peak feature is maintained when a large value of 
μ is implemented. This demonstrates the validity of the optimal formulae in Eqs. (13) and (14) for a large range of applications. 

For the considered values of g0, the control effectiveness of ATID-P can be compared with that of the modified ATID as in Eq. (4) 

Fig. 3. Phase margin of the SDOF-ATID-P coupled system when the optical settings are applied.  
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where both first and second order low-pass filters are employed i.e. ATID-S. The cut-off frequency of the low-pass filters used in the 
ATID-S is one tenth the natural frequency of the primary structure. Two sets of control parameters are considered. For the first case, the 
gains associated with the first-order and second-order low-pass filters are taken the same as that derived in [23] which means that the 
influence due to the use of low-pass filters is neglected. In order to account for this influence, these two gains are modified in the second 
case to retrieve the equal peak property according to the numerical ℍ∞ optimisation performed in Appendix B. The resulting per
formance index of the ATID-P and ATID-S (with and without gain corrections) is compared in Fig. 5. It can be seen that ATID-P always 
outperforms the ATID-S for the considered values of g0. The main reason behind the performance difference can be attributed to the 
different layouts of their equivalent mechanical components as shown in Fig. 1(b) and (d). For ATID-S, the DC gain of the driving-point 
receptance is derived from Eq. (B.1) by substituting S = 0, which reads: 

⃒
⃒
⃒
⃒
x1

xd

⃒
⃒
⃒
⃒

ATID− S

S=0
=

Ωc
2 + Ωcgsn + gdn

Ωc
2(μ + 1) + Ωcgsn + gdn

. (18) 

Fig. 4. The frequency response function of (a) the control plant, (b) the open-loop gain and (c) magnitude of the performance index for different 
values of g0. 
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Since Ωc is often chosen relatively low for implementing the low-pass filters, the DC gain can be considered as invariant with respect 
to the control parameters. Consequently, |x1 /xd|

ATID− S
S=0 ≈ 1 is established for different values of μ as shown in Fig. 5 (a)–(c). This makes 

the minimal maximum value of the cost function hardly able to go below unity when the ATID-S is used. 
On the other hand, the DC gain for the ATID-P scenario can be obtained in a similar way from Eq. (12), which is expressed as: 

⃒
⃒
⃒
⃒
x1

xd

⃒
⃒
⃒
⃒

ATID− P

S=0
=

Ωc
2 + gdn

Ωc
2(μ + 1) + gdn

(19) 

In such a case, Ωc is not negligible anymore which actually makes the DC gain decrease with an increase of μ. For example, the DC 
gain drops to 0.75 when μ is set to 1.4 as in the case shown in Fig. 5 (c). This opens the door for the ℍ∞ algorithm to find a solution for 
the ATID-P to have the minimal maximum of the cost function smaller than unity as shown in Fig. 5 (c). As such, the outperformance of 
ATID-P is more visible when μ is relatively large. This also indicates that the ATID-P concept would be preferred in practice as it not 
only suppresses the low frequency saturation problems but also yields a better control performance in the ℍ∞ sense. 

Finally, it should be noted that the optimal feedback gains in Eqs. (13) and (14) are derived for an ideal SDOF system, but it is also 
possible to use them for a specific mode of multi-degree-of-freedom (MDOF) systems as demonstrated in Krenk et al. [33]. In such a 
scenario, careful calibrations of the system are needed to identify the contributions from non-resonant modes. The non-resonant modes 
which are lower than the target mode introduce an inertial effect, whereas higher modes bring a quasi-static contribution to the target 
mode. The calibration procedure of the proposed ATID-P for MDOF systems is left for a future work. 

3. Experimental validation 

In order to experimentally validate the theoretical analysis, the test bench was prepared, which is shown in Fig. 6. The primary 
structure is a cantilever aluminium beam with the dimensions 45 cm × 3 cm × 0.3 cm (length*width*thickness). The beam was 
clamped at one end and excited with two voice coil actuators (AVM24-10) at the other end. One of them is used to introduce the 
disturbance force and the other one is used to deliver the control force. According to the Lorentz law, the force delivered by an ideal 
voice coil actuator (its mass and damping are neglected) can be regulated by Preumont et al. [31]: 

f = − 2πnrBi (20)  

where i is the input current, B the magnetic flux, 2πrnis the length exposed to the magnetic flux. 
Close to the voice coil actuators, an eddy-current sensor (ECL101) was installed to measure the tip displacement of the beam. In this 

study, only the first bending mode of the beam is considered such that the single-mode beam can dynamically represent a linear SDOF 
system. The block diagram of the control scheme is depicted in Fig. 7. Underneath the control actuator, a force sensor (PCB 221B02) is 
installed in order to measure the transmission force and provide the feedback signal. However, additional damping is induced by the 
voice coil actuators (the eddy-current effect and air viscous damping effect), which violates the low damping assumption of the 
primary structure. Thus, a negative damping control loop was implemented in order to eliminate the total inherent damping of the 

Fig. 5. Control performance comparison for ATID-P and ATID-S (without and with gain corrections).  
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system. This was achieved by positively feeding the tip velocity signal back to drive the voice coil actuators. The velocity signal is 
obtained by passing the displacement signal measured by the eddy current sensor through a first-order high-pass filter with a corner 
frequency of 500 Hz. The high-pass filter instead of a pure derivative is used which is mainly to avoid the over-injection of the high- 
frequency sensor noise. The feedback gain of this negative damping loop is denoted as gneg. Note that the force sensor is placed un
derneath the magnet of the voice coil actuator which is different to the proposed configuration in Fig. 1 (a). This is done mainly to 
avoid adding too much weight to the beam. Nevertheless, the actuator actually delivers a pair of reactive force which on one hand acts 
on the beam and on the other hand on the ground. Therefore, the force sensor in the current configuration measures the same 
transmission force as it would be in the configuration as indicated in Fig. 1 (a). 

Fig. 6. The experimental test set-up: (1) cantilever beam, (2) eddy-current sensor (ECL101), (3) force sensor (PCB 221B02), (4) voice coil actuator 
(AVM24-10), (5) MicroLabBox, (6) current amplifier (ADD-45N) and (7) ICP conditioner (PCB 482C05). 

Fig. 7. The configuration scheme of the experimental set-up.  
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One can also tell from Fig. 1 (a) that the two actuators and the displacement sensor should be located at the same position. 
However, this was not the case for the experimental set-up. This imperfection might affect the system identification results and the 
derivation of the corresponding control parameters provided the transfer function between the ‘control’ actuator and the displacement 
sensor is noticeably different to that between the ‘disturbance’ actuator and the displacement sensor. It was found that the difference 
between these two transfer functions is negligible with the current configuration as shown in Fig. 6, which is further evidenced by the 
experimental results. Therefore, no extra efforts were spent to develop a perfect set-up which is left in a future work for the in
vestigations on MDOF applications. 

A dSpace MicroLabBox system was used both for the data acquisition and the control implementation. The control scheme was 
implemented in the Matlab Simulink environment and then downloaded to the processor unit of the MicroLabBox system. The control 
scheme was updated at a sampling frequency of 10 kHz, and the measured data were recorded at the same sampling frequency. A 
current amplifier (ADD-45N) was used to drive the voice coil actuators. 

The optimal values of the control parameters were derived through 4 steps:  

• First, a measurement of the control plant is performed, based on which the locations of the zeros and the poles as well as the DC gain 
are extracted. 

Fig. 8. The frequency response of (a) the control plant, (b) the open loop gain and (c) magnitude of the performance index for different values of g0.  

G. Zhao et al.                                                                                                                                                                                                           



Journal of Sound and Vibration 514 (2021) 116443

11

• The effective stiffness ratio μ was estimated for a fixed value of g0. This was done by substituting the zero-pole locations identified in 
the first step into Eq. (17).  

• The third step focused on the quantification of the mode interactions between the other structural modes and the targeted mode i.e. 
the first mode. According to Krenk and Hogsberg [33], the influence of higher modes can be characterised as a quasi-static 
contribution, which makes the true optimal gains different from those of a SDOF system. This effect can be quantified by 
comparing the DC gain of the control plants of the equivalent SDOF system with that of a SDOF system. For a SDOF system, the DC 
gain defined as the response of the control plant at 0 Hz i.e. G(0) is only determined by the parameters μ and g0 given in Eq. (15). 
While for the equivalent SDOF system, the DC gain is also influenced by the contributions from the higher modes, which can be 
simply considered as a gain effect. Therefore, this difference referring to as interaction correction factor (ICF), needs to be 
multiplied with the derived optimal gains as in Eqs. (13) and (14) in order to eliminate the influence of the mode interactions.  

• Finally, the identified stiffness ratio μ, the ICF and the frequency of the zero (corresponding to the resonance of the primary 
structure when the actuator is removed i.e.ω1 in Eq. (7)) are substituted into Eqs. (7), (13) and (14) to obtain the optimal feedback 
gain gd and cut-off frequency a for implementing the ATID-P controller defined in Eq. (4). 

The first set of experiments was conducted to validate the optimal control parameters for different values of g0. A white noise signal 
was applied to excite the beam in the vicinity of its first bending mode. The duration of the measurement was set to 200 s. 

Table 2 
Control parameters.  

parameters g0 = 0  g0 = − 0.492  g0 = − 0.786  

μ  0.307 0.604 1.425 
ICF 0.82 0.814 0.778 
gd  3652.1 2128.1 1181.6 
a  21.34 30.53 47.73 
gneg  850 850 850  

Fig. 9. Comparison of the driving-point receptance when g0 = 0, a = aopt and gd is varied from 0.5 to 2 times its optimal value.  

G. Zhao et al.                                                                                                                                                                                                           



Journal of Sound and Vibration 514 (2021) 116443

12

Fig. 8 (a) plots the frequency response of the control plant when g0 is set to 0, -0.5 and -0.786, respectively. The stiffness ratio, ICF 
and the optimal control parameters are summarised in Table 2. Note that the coherence of the control plant is relatively low when g0 is 
set to -0.786. This is because the magnitude of the control plant is amplified by a factor of 1/(1 + g0), and the input disturbance force 
has to be limited to avoid an overwhelming response around the resonance frequency. As a consequence, the signal-to-noise ratio is low 
at other frequencies leading to a low coherence. Nevertheless, the optimal control parameters can still be accurately estimated. With 
these optimal controllers, the open loop gains are shown in Fig. 8 (b). It is found that the phase margin matches very well the 
theoretical value in Fig. 3. Finally, the control performance is examined. Fig. 8 (c) depicts the driving-point receptance (the transfer 
function between the disturbance force and the measured tip displacement). As expected, a better control effectiveness is achieved 
when g0 approaches -1. The comparison between Figs. 8 and 4 shows that the experimental results are in a good accordance with the 
theoretical analysis. 

Next, the influence of the control parameters’ variation is investigated. Fig. 10 compares the driving-point receptance, where g0 is 
set to zero, the cut-off frequency a is set to its optimal value (14) and the feedback gain gd is varied from 0.5 to 2 times its optimal value 
(13). On the other hand, Fig. 9 investigates the effect of the cut-off frequency a which is varied from 0.5 to 2 times its optimal value, 
while g0 is set to zero and gd is set to its optimal value. The obtained experimental results are in a good accordance with the theoretical 
predictions in Fig. 2 (a) and (b). The equal-peak feature is obtained when the optimal value of the control parameters is implemented. 

The last set of experiments examines the control effectiveness of different controllers as in Fig. 5. Here, the cut-off frequency of the 
low-pass filter of the ATID-S is set to 1 Hz. Two scenarios are considered where the corrections for the control gains are either 
implemented or not. The driving-point receptances are compared in Fig. 11, where the results corresponding to the ATID-P are also 
superimposed. It can be seen that the ATID-P always outperforms the ATID-S for the considered values of g0, and a visible degradation 
of the ATID-S’s control effectiveness is observed when the corrections due to the use of low-pass filters are not implemented. 

4. Conclusion 

This paper discusses the practical applicability of a modified active inerter-damper system, the ATID-P, realised using a pair of 
collocated actuator and force sensor. The controller consists of a second-order low-pass filter and a proportional term. The equivalent 
mechanical model of the controller’s components is derived in order to illustrate the influence of the active control system on the 

Fig. 10. Comparison of the driving-point receptance when g0 = 0, gd = gopt
d and a is varied from 0.5 to 2 times its optimal value.  
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primary system. The second-order low-pass filter was found to be equivalent to a pure mechanical network which comprises an inerter, 
a spring and a damper connected in parallel, and the proportional term plays the same role as a mechanical spring connected in series 
with the inherent actuator spring. Simple expressions are derived based on the ℍ∞ optimisation criterion which aims to minimise the 
maximal response of the driving-point receptance of the system. It is shown that the performance of the ATID-P is governed by the 
stiffness ratio between the chosen actuator and the primary structure. By cascading the proportional controller, a relatively large 
stiffness ratio can be implemented given that the associated gain is properly tuned. This does not only improve the achievable vibration 
mitigation performance but also increases the phase margin. The numerical study was also experimentally validated. The obtained 
results were found to be in excellent agreement. With these results, one can envision to develop a simple analogue electronic control 
system for a collocated actuator-force sensor pair such that the resulting active inerter-based damper would be compact enough for 
smart structure applications. 
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Appendix A 

In this appendix, it is shown that the systems sketched in Fig. 1 (a) and (b) are dynamically equivalent, or, in other words, the 
networks shown in Fig. A.1 (a) and (b) are equivalent. 

Fig. A.1 (b) depicts a pure mechanical system which consists of several springs and dashpots as well as an inerter. Under the 
excitation force denoted by F, the governing equations of this system can be written as: 

Fig. 11. Control performance comparison for ATID-P and ATID-S (without and with corrections).  
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F = − ma

(

ẍ1 − ẍ2

)

− dm

(

ẋ1 − ẋ2

)

− km(x1 − x2) (A.1)  

F = − da

(

ẋ2 − ẋ3

)

− kd(x2 − x3) (A.2)  

F = − k0(x3 − x4) (A.3)  

F = − ka(x4 − x5) (A.4) 

Expressing the relative motion in terms of the transmission force F, Eqs. (A.1)–(A.4) can be rewritten as: 

x1 − x2 =
− F

mas2 + dms + km
(A.5)  

x2 − x3 =
− F

das + kd
(A.6)  

x3 − x4 = −
F
k0

(A.7)  

x4 − x5 = −
F
ka

(A.8) 

Summing up Eqs. (A.5)–(A.8) and multiplying both sides with ka, yields: 

ka(x1 − x5) =
− kaF

mas2 + dms + km
−

kaF
das + kd

−
kaF
k0

− F (A.9) 

According to the control law, the governing equations of the system shown in Fig. A.1(a) can be expressed as: 

F = − gs
Fs(s)
s + a

− gd
Fs(s)

(s + a)2 − g0Fs(s) − kax (A.10)  

where x = x1 − x5 represents the relative displacement across the active inerter damper and Fs = F. 
Comparing Eq. (A.9) with Eq. (A.10) and one can find the equivalence between systems shown in Fig. A.1(a) and (b). The feedback 

gains and their corresponding mechanical components are thus related by Eq. (A.11): 

da =
ka

gs
, kd =

aka

gs
,ma =

ka

gd
, dm =

2aka

gd
, km =

a2ka

gd
, k0 =

ka

g0
(A.11)  

Fig. A.1. (a) the sketch of the active system and (b) its mechanical representative.  
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Appendix B 

In this part, the ℍ∞ optimisation of ATID-S is performed. The normalised driving-point receptance of the primary structure when 
ATID-S is implemented can be derived as: 

x1

xd
=

S2 + (2Ωc + gsn)S + Ωcgsn + Ωc
2 + gdn

S4 + (2Ωc + gsn)S3 +
(
1 + Ωc

2 + gdn + μ + Ωcgsn
)
S2 + (2Ωc(μ + 1) + gsn)S + Ωc

2(μ + 1) + Ωcgsn + gdn
(B.1)  

and its magnitude is given as: 

⃒
⃒
⃒
⃒
x1

xd

⃒
⃒
⃒
⃒ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ω4 +
(
(gsn + Ωc)

2
+ Ωc

2 − 2gdn
)
Ω2 +

(
gsn Ωc + Ωc

2 + gdn
)2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2μ
(
Ω2 − 1

)( (
Ω2 − Ωc

2)gdn −
(
Ω2 + Ωc

2)( Ω2 + gsn Ωc + Ωc
2))+

(
Ω2 − 1

)2A + B
√ (B.2)  

where A = (gdn)
2
+ ( − 2Ω2 + 2gsn Ωc + 2Ωc

2)gdn + (Ω2 + Ωc
2)(Ω2 + (gdn + Ωc)

2
), S = s/ω1is the normalised Laplace variable, Ω = S /j 

is the normalised frequency and B = (Ω2 + Ωc
2)

2μ2. 

Fig. B.1. Gain ratio between the numerically and analytically obtained values for (a) gopt
sn and (b) gopt

dn .  
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A numerical ℍ∞ optimisation is performed where the optimal settings of gsn and gdn are derived given μ and Ωc are fixed. In order to 
better understand these numerically obtained optimal values, they are compared with the analytically derived counterparts in Zhao 
et al. [23] where pure integrators are employed i.e. Ωc is set to zero. Fig. B.1 (a) and (b) plot the ratio between the numerically and 
analytically obtained values for gopt

sn and gopt
dn against μ and Ωc, respectively. 

When Ωc is relatively small, it can be seen that the analytically obtained optimal settings derived for the case where perfect in
tegrators are used [23] can still hold. This implies that these closed-form expressions could be still applicable for high-frequency 
applications since it allows to choose a relatively high cut-off frequency which helps limit the low frequency amplification but still 
remains negligible compared with the resonance frequency to be damped. However, this is not case for low-frequency applications for 
example the active seismic isolation systems used for gravitational wave detections, the resonance frequency of which is often very low 
[34,35]. In such a case, the cut-off frequency of the low-pass filters is often very close to the resonance frequency i.e. Ωc is relatively 
large whereas a dramatic correction is needed for the control parameters. Especially for gsn, it even undergoes a change of sign from 
positive to negative values. This occurs because the use of a second-order low-pass filter already introduces an additional pair of spring 
and dashpot in parallel with the desired inerter. The corresponding stiffness and damping are unfortunately more than needed for 
fulfilling the ℍ∞ optimisation criterion. Therefore, a negative gain of the first-order low-pass filter which provides a pair of negative 
stiffness and damping is sought aiming to compensate the inherent stiffness and damping associated with the second-order low-pass 
filter. For such scenarios the first-order low-pass filter may not be needed as a second-order low-pass filter with a proper tuning might 
be already good enough. In addition, the unconditional stability feature might be compromised when a negative feedback gain is used. 
For example, the system becomes unstable when the derived optimal values are used for μ = 0.582, Ωc = 0.5, as indicated by the cross 
marker in Fig. B.1(a). The dependence of Ωopt

c on μ for the ATID-P is also superimposed on Fig. B.1(a). It is seen that it divides the map 
into two zones: gopt

sn is positive or negative for a given pair of Ωc and μ. 
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