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Prof. Gaetan KERSCHEN (Université de Liege)
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Abstract

Lightweight designs in engineering applications give rise to flexible structures with extremely low
internal damping. Vibrations of these flexible structures due to an unwanted excitation of system
resonances may lead to high cyclic fatigue failure and noise propagation. A common method to
suppress the vibrations is to increase the damping of the system using one of classical control tech-
niques i.e. passive, active, and/or hybrid. Passive techniques are those control systems which are
simply integrated into the structures with no need of external power source for their operations,
like viscoelastic damping, piezoelectric and electromagnetic shunt damping, tuned mass damper,
etc. However, the control performance of these systems, in terms of the damping ratio and the
robustness to uncertainties, is highly limited to the system properties. For example, viscoelastic
damping may not perform well at low frequencies and the performance of shunt damping is depen-
dent on the electromechanical coupling between the structure and the transducer. To overcome the
passive limitations, it has been proposed to use active control systems, which are less sensitive to
system’s parameters, to improve the control performance. It requires an integration of sensors and
actuators with a feedback loop containing control laws. However, high requirement of the external
power source is not favorable for the engineering applications where energy efficiency is the key
parameter. The combination of active and passive strategies, known as hybrid control systems,
provide a fail-safe configuration with a high control performance and a low power consumption.
The price to pay for such configurations is the complexity of the design.

This doctoral thesis first investigates the conceptual designs of all kinds of the classical control sys-
tems for a simplified mechanical system. They include 1) the passive shunt using electromagnetic
transducer, 2) the active control system using a positive feedback as well as a negative feedback,
and 3) the hybrid electromagnetic shunt damper using both an active voltage source as well as
an active current source. The next part of this thesis is focused on bladed structures as real-life
applications which highly require vibration control due to their low internal damping. Because
of the practical reasons, piezoelectric transducers are used for the application of control systems.
Finite element model of the structure is made first without piezoelectric patches to optimize the
best locations of piezoelectric patches. Then, the model is updated with the piezoelectric patches
to numerically simulate different control strategies. The experiments are performed to validate the
numerical designs.
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A turbomachine is a power plant producing a mechanical work in order to drive a secondary
system such as a fan of jet engine, a shaft of a helicopter, an electrical generator, etc. Figure
1.1 shows a schematic of the turbomachine designed by General Electric Company for an aircraft
engine [1].

Bladed disk assemblies are being used in different stages of the turbomachines. The bladed disk
assembly is referred to as a structure consisting of blades mounted on a disk-shaped part as support.

Figure 1.1: General Electric GE9X Cutaway Drawing [1].
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1.1. Vibration of bladed structures

Figure 1.2: Two methods of attaching blades to turbine discs [2].

Figure 1.2 shows two early methods for manufacturing such structures in a way that the blades
are attached to the disk using root fixing features [2]. These methods facilitate the maintenance of
the machine in case of the need for replacing the blades due to damages. In addition, both fixing
solutions provide a considerable damping intrinsic to the blades. However, these advances have
severely decreased the energy efficiency of the machine due to the mass added to the structure
leading to high centrifugal loads applied to the disk. In order to improve the energy efficiency of
the turbomachines, the bladed structures have been redesigned, in the past years, by using new
materials and/or new fabrication techniques. Manufacturing blades and disk in a single piece is
the new design of such bladed structures which interestingly reduces the mass of the structures.
This method, however, makes the maintenance of the machine complicated and most importantly
removes the inherent damping of the blades. It is still possible to lighten the machine by replacing
the disk to a ring- or drum-shaped structures. The bladed rings is also known as ‘blings‘ and the
bladed drum is known as ‘blums‘. As shown in Figure 1.3, a new design of the monobloc bladed
drum called BluM, where the blades have been attached to the drum part using friction welding,
has been manufactured by SAFRAN Techspace Aero.
The BluM is the structure of interest in this thesis.

1.1 Vibration of bladed structures

Vibrations of the bladed structures appear due to the unwanted excitation force induced by the
fluctuation of gas flows in turbomachines. The presence of dynamic loads can excite the resonances
of blades with high levels of vibration due to the lack of enough inherent damping. As shown in
Figure 1.4, the vibratory stresses leave the blades susceptible to high cycle fatigue failures [12].
Therefore, any further damping provided to the structure is desirable to extend structural lifetime.
Beyond an extended lifetime, a reduction of the blade vibration could also allow a reduction in
noise propagation.
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Figure 1.3: A CAD view of the monobloc bladed drum (i.e. BluM).

To design a robust vibration damping system, it is first necessary to characterize the dynamic
behavior of the BluM in terms of the natural frequencies and mode shapes. Its particular geometry,
containing the drum and the blades, makes it more complicated than beams or plates. As shown
in Figure 1.5, their vibrations are typically classified into three groups:

� Blades dominated modes where the maximum deformations are mostly distributed on the
blades

� Drum dominated modes where the maximum deformations are mostly distributed on the
drum

� Coupled modes where the maximum deformations are uniformly distributed on both drum
and the blades

Due to the axisymmetry of the structure, the mode shapes appear with N nodal diameters. N can
be varied from 0 to n/2, where n is the number of blades. In addition, the mode shapes occur

Figure 1.4: Fan blade failure due to a high cycle fatigue of the blades [3].
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1.1. Vibration of bladed structures

in degenerate orthogonal pairs. Both modes of the pair with the same resonance frequency have
also the same shape, but are rotated with respect to each other by 90° around the axis of symmetry.

The first 200 resonances of the BluM are shown in Figure 1.6. The natural frequencies correspond-
ing to the drum dominated modes and the coupled modes are well-separated with each others.
However, the high modal density resonances occur when the modes of the blades are dominated.
In this case, a high number of modes, known as the family of modes, appears in a short range
of frequency. The number of modes in a family depends on the number of blades and equal to
n/2. The first modes family corresponds to first bending mode of the blades and the second family
corresponds to the first torsion mode of the blades. The rigidity of the drum governs the difference
between resonance frequencies in each family such that a set of 76 independent resonances happens
with the same frequency if the drum was completely rigid and the blades were perfectly identical.
Owing to the transmission of the energy of the blades through the flexible drum, the flexibility of
the drum makes the blades modes occur with different frequencies and shapes.

Vibration response of turbomachinery bladed structures is extremely subjected to plant uncertain-
ties from different sources. During the normal operation of the machine, centrifugal forces and
thermal gradients subject the blades to the static loads. The centrifugal force, induced by the
high rotational speed of the structure, can directly affect the static stiffness and subsequently cre-
ates resonance uncertainties. In addition, mistuning is another source of resonance uncertainties.
Mistuning is referred to small bladed-to-blade variations which occur during the manufacturing
of the blades. Therefore, the blades are no longer identical and the rotational periodicity of the

Figure 1.5: Typical mode shapes of the BluM. a) Drum dominant mode with 4 nodal diameters;
b) Blade dominant mode with 9 nodal diameters; c) Coupled mode with 5 nodal diameters [4].
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Figure 1.6: Resonance frequencies of the BluM [5].

structure is distorted. Although the mistuning is very complex to be characterized in practice, it
can certainly affect the resonance frequencies and mode shapes of the structure.

1.2 Damping of bladed structures

It has been discussed that three main vibration characteristics of the BluM include the low inherent
damping, the high modal density resonances, and the plant uncertainties. Therefore, the control
system aims at achieving an acceptable control performance (in terms of damping for a broadband
vibration resonances) in the presence of the plant variations. However, there is a fundamentally
tradeoff between the conflicting goals of the control performance versus robustness to the plant
uncertainties. Besides this, there are other requirements on a control system such as the fail-safe
design, the power consumption, as well as the stability in terms of gain and phase margins. What
follows is a summary of different control strategies.

1.2.1 Passive damping

Passive techniques are those control systems which are simply integrated into the structures with
no need of external source of power. Figure 1.7 shows three kinds of the passive control system to
suppress the vibration of the system, containing a mass m, a small primary damping c, and the
spring k, when it is excited by an external force fd. According to Figure 1.7a, a relative deforma-
tion between the structure and the constraining layer causes shear deformations in the viscoelastic
material that dissipate vibration energy. While simple, viscoelastic damping may not perform well
at low frequencies [13]. Using friction damping as shown in Figure 1.7b, the mechanical energy
is dissipated at the interface between the structure and the rough surface. Despite the fact that
friction damping techniques is a broadband vibration absorber like viscoelastic devices, difficulties
arise from their highly nonlinear behavior [14]. Another passive control technique is tuned mass
damper (TMD) as it is shown in Figure 1.7c. By properly tuning the mass, the spring, and the
damping of TMD, it can suppress a target resonance of the primary system. Although TMD is an
effective damping technique, its performance is highly related to the mass ratio between the mass
of the TMD and the mass of the structure [15]. This means that the better performance comes at
the expense of the added mass to the system which is not favorable in our application.
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Figure 1.7: Schematic of different passive control systems. (a) Viscoelastic damping. (b) Friction
damping. (c) Tuned mass damper.

piezoelectric and electromagnetic transducers are commonly used in the design of the passive
control systems when they are connected to a shunt circuit as shown in Figures 1.8a and 1.8b.
Those transducers are able to transduce mechanical energy into electrical domain and vice versa.
Hence, when the structure is under excitation, the mechanical energy can be transferred to the
electrical energy and consequently dissipated by shunting elements. Resistive shunt connected to
either piezoelectric [16] or electromagnetic [17] transducers has been used to provide a broadband
vibration damping. On the other hand, resonant shunt can enhance the vibration damping of a
target mode compared to that of the resistive shunt. The corresponding resonant circuit when a
piezoelectric transducer is used differs from that of an electromagnetic transducer. From electrical
point of view, a piezoelectric transducer behaves as a capacitor in series to a voltage source (Fig-
ures 1.8c); whereas, an electromagnetic transducer acts as an inductor and a resistor in series to a
voltage source (Figures 1.8d). Therefore, to form resonant RLC circuit, the inherent capacitance
of the piezoelectric is shunted with a resistor as well as an inductor and the inherent inductance
of the coil is shunted with a resistor as well as a capacitor. In spite of the interest, such passive
techniques are limited by the electromechanical factor which measures the ability of the transducer
to convert mechanical energy into the electrical energy and vice versa.

When it comes to rotating structures, practical implementation of the control system becomes
a key factor. Clearly, TMD is no longer an option due to the added mass to the structure. The
viscoelastic damping, the friction damping and the piezoelectric shunt damping have been designed
and developed for the bladed structures. In the following, we will review these techniques.

The viscoelastic material has been used to damp the vibrations of the structures where the
blades are attached to the disk using root fixing solutions. As shown in Figure 1.9, Nguyen et al.
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Figure 1.8: Schematic of passive shunt damping using (a) piezoelectric and (b) electromagnetic
transducers.

[6] proposed the use of such material at the interface of the blades and the disk for non-monobloc
bladed disk assemblies. It is still possible to use this technique on monobloc bladed disk assemblies.
However, high temperature severely degrades its performance.

The friction damping techniques have been proposed to suppress the vibration of bladed
structures in different ways [18]. For a bladed disk assemblies where the blades are mounted by
using root fixing solution, Yeo and Goodman [19] introduced three locations for the use of friction
damping devices including (i) at the root of the blades as shown in Figure 1.10a, (ii) between the
blades themselves, and/or (iii) at the shrouds. For monobloc bladed disk, Laxalde et al. [20] de-
veloped friction damping ring as shown in Figure 1.10b and Stangeland et al. [21] designed friction
fingers mechanism illustrated in Figure 1.10c. Nevertheless the efficiency of the friction damping
solutions even at the presence of its nonlinear behavior, the new fabrication technique of the bladed
assemblies renders impossible the use of such damping systems in practice.

The passive piezoelectric shunt damping has also been the subject of many research ac-

7



1.2. Damping of bladed structures

(a) (b)

(c)

Figure 1.9: Using viscoelastic material to damp the vibration of blades attached to the disk with dif-
ferent root fixing solutions such as a) the dovetail root attachment, b) the T-block root attachment,
and c) the fir tree root attachment [6]

tivities for bladed structures. It was first studied by Schwarzendahl et al. [22]. The study was
performed on a plate-like compressor blade where the maximum amplitude reduction of the first
mode of the blade was highlighted to optimize the shunt circuit. In order to reduce the complexity
required to implement a passive system targeting multiple modes, Kauffman et al. [23] proposed
a semi-active approach using low-power frequency-switching. The use of negative capacitance to
enhance the control performance of the passive shunt has been studied on a test-rig of a bladed disk
model with eight blades [24]. In these studies, piezoelectric patches were mounted directly on the
blade. Although locating patches on the blade can offer a better electromechanical coupling factor
since the patches are placed near the maximum strain distribution, they cannot be implemented in
practice since they disturb the aerodynamic flow. As shown in Figure 1.11, Mokrani et al. [7] used
multiple patches on the internal part of the BluM and tuned the shunt elements using the average
frequency of the first bending modes family.
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(a) (b)

(c)

Figure 1.10: Friction damping technique for a) a non-monobloc bladed disk (at the root of blades)
and for monobloc bladed disk: b) the friction ring device and c) the friction fingers mechanism

Figure 1.11: For the purpose of the shunt damping used for the BluM, the piezoelectric patches
are mounted on the internal part of the structure [7].

1.2.2 Active damping

It has been mentioned that the control performance of these systems is highly limited to the system
properties. To overcome the passive limitations and further improve the control performance, it
has been proposed to use active control systems, which are less sensitive to system’s parameters.
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An active control system requires an integration of sensors and actuators with a feedback loop con-
taining control laws [25]. In the literature, different control laws have been proposed successfully
when a sensors is collocated with an actuator. These include direct velocity feedback (DVF) [26],
positive position feedback (PPF) [27], digital shunt damping [28], integral force feedback (IFF) [29],
etc. The choice of the control law for a system depends on the type of sensor/actuator leading to
different shapes of the open-loop transfer function in terms of pole/zero pattern.

When a force actuator is combined with a velocity sensor as shown in Figure 1.12, DVF can be
simply used as the control law [30] such that the feedback loop can artificially increase the viscous
damping of the structure. In practice, the force actuator is found in two commercial types, i.e.,
the inertial actuator and the reactive actuator shown in Figures 1.12a and 1.12b, respectively. The
inertial actuator is a force actuator that is in parallel to a passive mount consisting of a reaction
mass supported by a spring attached to a substructure. Its resonance frequency is much lower than
the fundamental resonance frequency of the controlled structure due to a very low stiffness of its
spring. This may results in high deflections of the proof mass. In order to add viscous damping to
the structure, the natural way is to drive the actuator with a signal which is proportional to the
velocity. This is called active mass damper (AMD). Although AMD can still increase the damping
of the system, the stability of the system is no longer guaranteed for high value of the feedback
gain even when the sensor and actuator are collocated [30]. Unlike the inertial actuators where
actuation force acts against the inertial mass, reactive actuators can be directly mounted on the
ground because of no additional passive mount. Interestingly, such actuators do not suffer from
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Figure 1.12: Schematic of velocity feedback collocated with a) an inertial force actuator and b) a
reactive force actuator.
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the aforementioned limitations.

For some applications, DVF suffers from high control effort and spill-over which refers to the
amplification of the response at high frequencies. To overcome such limitations, PPF is proposed
to be implemented on a system equipped by a displacement sensor collocated with a reactive actu-
ator as shown in Figure 1.13a. In fact, PPF can add high frequency roll-off in a feedback loop since
its control law contains either a first- and second-order low-pass filter. In fact, first-order PPF is a
multimode vibration control system like DVF; while, second-order PPF is a resonant control which
is able to damp a target mode. Properly tuning parameters of PPF can lead to a better control
performance in terms of the closed-loop damping compared to DVF. These advantages come at
the expense of a lower static response, a lower phase and gain margin, and conditional closed-loop
stability. Beside, for collocated piezoelectric patches used as sensor and actuator, the open-loop
transfer function has no high frequency roll-off. Therefore, PPF is highly recommended as the
control law to avoid high risk of spill-over at frequencies higher than frequency band of interest.

Similar to DVF which artificially increase the damping ratio of a system, IFF is applied on a
structure combined with a force sensor between the structure and a force actuator that its time de-
lay or its hysteresis is negligible [29]. The actuator is driven by a signal proportional to the integral
of the forces applied to the structure and measured by the sensor as shown in Figure 1.14a. Consid-
ering the force is proportional to the acceleration, the control force is proportional to the velocity
leading to a higher value of the damping ratio. Although IFF is a robust broadband control system,
its performance is limited by the stiffness ratio between the actuator and the primary structure.
In order to improve the control performance of a target mode in terms of the closed-loop damping
ratio, α-controller, consisting of a double integrator and a real zero, is proposed. For such control
laws, the low frequency content is significantly amplified during the integration process which leads
to a dynamically softer system. In order to solve this issue, it has been proposed to use a high-pass
filter in series with the IFF or α-controller. It is also worth pointing out that piezoelectric stacks
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Figure 1.13: Schematic of PPF when a) displacement sensor is collocated with a reactive force
actuator, and b) two piezoelectric patches are collocated.
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are widely used as the actuator in practice since they possess a high value of stiffness (Figure 1.14b).

For a classical active control system, the same or a similar mechanical analogy might be obtained.
The mechanical analogy contains passive elements like masses, dashpots, springs, and inerters.
Note that inerter is known as a device which generates a force proportional to relative accelerations
across its two terminals [31]. This can be used in mechanical designs to modify or substitute the
mass of structures. The problem of realizing the mechanical designs passively comes in practical
implementations because of some imperfections which will be inevitably present in the mechanical
construction preventing them to act as idealized passive elements. For example, springs may have
unwanted internal resonances at high frequency [32] which prevents from having high frequency
roll-off in the response. Several mechanical forms have been proposed to realize inerters in practice.
Two early ideas were to use rack and pinion based inerters [31] as well as ball and screw based
inerters [33]. However, their performance may degrade because of the friction and backlash or
elastic effect of gears or screws [34]. Hydraulic inerters [35] have been proposed although they may
exhibit some nonlinear damping in addition to the inertance-like behavior [36].

Other than the mechanical analogy of an active control system, it might be possible to obtain
an electrical analogy which consists of a piezoelectric or an electromagnetic transducer combined
with an electrical network. A well-known example is IFF [37] which is analogous to the relaxation
isolator (i.e. its mechanical analogy) as well as an electromagnetic transducer connected to a RL
circuit (i.e. its electrical analogy). For piezoelectric transducers, their low capacitance may lead to
a large inductance required for the electrical network [38]. The large inductance cannot be easily
realized fully passively. Furthermore, high internal resistance of the coil can degrade the perfor-
mance of the system for electromagnetic transducers [39].

Realizing the mechanical or the electrical systems by means of active techniques can overcome the
aforementioned problems. Tuned inerter damper (TID) system is a well-know mechanical passive
control system [40] which has been realized actively in [41] and [11]. In addition, direct acceler-
ation feedback has been introduced in [42] to synthesize the inerter actively. In [27], a nonlinear
spring has been added to a cantilever beam experimentally by feeding back the displacement of the
structure through a cubic function. Moreover, piezoelectric shunt damping has been implemented
actively by generating the signal corresponding to the RL circuit digitally [28]. Consequently, active
techniques provide us a more flexible tool to shape the behavior of the possible mechanical and
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Figure 1.14: Schematic of force feedback configuration using a) a force actuator which possess an
interal spring ka, or b) piezoelectric stack as an actuator.
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electrical systems. Nevertheless, its advantage comes at the expense of a power consumption as an
external source is required for actuators [43].

Despite the potential of the active control systems, only a few studies have been focused on using
such tools for the bladed structures. An active control system has been implemented on General
Electric Aviation (GE) subscale composite fan blades using piezoelectric patches as sensors and
actuators as shown in Figure 1.16. In this study [8], the control system has been inspired from the
transfer function of a simple RL circuit which is used for the passive piezoelectric shunt damping.
It has been reported that the advantages of this technique compared to the common passive tech-
nique are the use of an amplifier to achieve a higher actuation level, and the fact that the active
control does not require an actual resistor or inductor, which can be very large-sized at low target
frequencies.

Figure 1.15: General Electric Aviation (GE) subscale composite fan blades with piezoelectric
patches for the implementation of active control system [8].

A number of studies has proposed active noise control (ANC) to reduce the source of engine noise
induced from the large fan at the front of the engine of the modern commercial jet aircraft. Those
studies have been conducted either numerically or experimentally in laboratory settings [44], [45],
[46], and [9]. For example, an ANC system, designed in [47], consists of multiple microphones as
sensors, multiple piezoelectric patches as actuators, and adaptive filters for controlling unit.

1.2.3 Hybrid damping

It has been shown that active control systems outperform passive techniques in terms of control per-
formance i.e. the total damping of the closed-loop system and robustness versus plant uncertainty.
However, the active systems suffer from other practical difficulties. They are mainly expensive
and complex to design and realize in practice. In their design, the stability of the closed-loop
system needs to be carefully checked since parametric errors in the feedback loop(s) can potentially
destabilize the system. The spillover effect is among one of the most challenging issues that might
spoil the active control system too. The lack of fail-safe feature in a sense that the structure is left
with no additional damping if the feedback loop is distorted illustrates low reliability. Besides the
complexity of such systems to be designed and developed, an external power source is required to
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1.2. Damping of bladed structures

Figure 1.16: Schematic of the ANC used in [9].

derive the actuator. The power consumption plays an important role in the practical implementa-
tion of such active control systems especially for the modern industries where the energy efficiency
is the key factor. Consequently, the superiority of the active control system comes at the price of
high cost, high complexity, and high energy consumption of the system compared to the passive
ones. Recently, a novel class of control devices aiming to possess several objectives at the same
time has been introduced by combining the best of active and passive approaches. These devices
are gathered under the common name of hybrid control systems. What follows is a summary of
two hybrid control systems. Their objectives are threefold: (1) increase performance compared to
the purely passive control system, (2) reduce energy consumption with respect to the purely active
control system, and (3) ensure a fail-safe behavior which means that the device will work as the
passive system when the active controller is undesirably turned off.

A class of hybrid control system known as hybrid mass damper has been introduced with the
combination of TMD as the passive absorber and AMD as the active control system. According
to the schematic of the HMD shown in Figure 1.17, an actuator is placed in parallel to the pas-
sive elements of TMD. The TMD adds another degree of freedom (DOF) to the structure with
a resonance frequency close to that of primary structure. This make the design of the feedback
loop more challenging. It has been shown that DVF is no longer effective due to the stability issue
[30]. In [48], an stable active control system based on pole placement has been designed to retrofit
the conventional TMD. In [49], a dual feedback loop has been preferred to increase the stability
margins. A hyperstable control law has been proposed in [50] and verified experimentally in [51].

There are a number of studies on active-passive-hybrid-piezoelectric-networks (APPN). Agnes [52]
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Figure 1.17: Schematic of the HMD based on the combination of TMD and AMD.

Figure 1.18: Various schematics of APPN configurations. Va: equivalent voltage generator at-
tributed to the piezoelectric effect; Vi: voltage source; Qi: charge or current source; Q1 and Q2:
charge flow in branches; Cp: piezoelectric capacitance; R: resistance; L: inductance. [10].
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proposed the concept of APPN and Tsai et al. [53] presented more insight and fundamental under-
standings to the APPN configuration. Basically, the APPN integrates piezoelectric shunt damping
with an active voltage or charge source [10]. The active voltage or charge source is made of a
feedback signal coming from the sensor amplified with a control system. Various APPN config-
urations have been shown in Figure 1.18. It was shown in [54] that the APPN is an attractive
configuration for the applications where minimizing the power consumption is critical. Morgan et
al. [55] used active coupling feedback to enhance the electromechanical coupling of the transducer.
They have also validated the concept experimentally on a cantilever beam in [56]. In most studies
about the APPN, a collocated piezoelectric sensor has been used to generate the feedback signal.
However, Li et al. [57] employed a velocity feedback control for the application of the APPN by
using a displacement sensor. The optimal values of the resistance and inductance could be quite
different from those of the purely passive system in the case of APPN. Therefore, Tsai el al. [58]
proposed a methodology to determine the optimal values of the resistor and inductor simultane-
ously with the control law. Furthermore, the multiple APPN has been also investigated to control
of a quadrilateral plate [59] and a ring structure [60].

1.3 Motivations and Contributions

This thesis has been realized within the Maveric project which has been funded by Service public
de Wallonie (SPW). The Maveric project was with a consortium of academic and industrial part-
ners involving Université Libre de Bruxelles, Université de Liège, and Safran Techspace Aero. The
aim of the Maveric project was to design and develop an intelligent absorber to suppress the blade
modes of the BluM. The absorber is supposed to meet multiple requirements such as multimodes,
high control performance, high robustness to plant uncertainty, fail-safe, and low external power
consumption. It is also called an intelligent absorber since it tends to be autonomous as much as
possible in terms of the energy balance. To do so, an energy harvesting device has been developed
as a part of the design to provide a portion of or the whole energy required for the control system.

Three different labs are directly involved in the Maveric project. The S3L group in Université
de Liège is responsible to design and develop a digital shunt device. Although the piezoelectric
shunt damping has been implemented on the BluM in [7], its main weakness is that the shunt
damping was tuned to damp only a target resonance of the blade. The novelty of the digital shunt
proposed by S3L group is to target multimode resonances of the blades in different families. The
Microys group in Université de Liège is in charge of tests and realize different energy harvesting
devices to maximize the extracted energy from the BluM during the rotation. And, PML group in
Université Libre de Bruxelles takes the lead in the design and the development of an active-passive
control system which has not been implemented before in the literature. The designed control
strategies need to be validated experimentally on both academic setup and the BluM. The aca-
demic setups have been chosen to be a cantilever beam and a bladed rail structure. The cantilever
beam is representative of a simple blade where its support is fully rigid. The bladed rail is seen as
a simplified version of the BluM where it possess a reduced number of the blades and the shape of
its support is simplified. While simple, the dynamic behavior of the bladed rail is supposed to be
similar to that of the BluM.

In PML, I have been working with two other Postdoc researchers in the context of the Maveric
project. My main contributions in this project as will be presented in this thesis are specified
below:

� Design and develop passive electromagnetic shunt damper. The novelty is to optimize the
parameters based on two different criteria i.e. maximum damping and maximum power
dissipation.
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� Design and develop high performance active control systems based on positive position feed-
back (PPF) and negative force feedback configurations. The novelty is to optimize the corre-
sponding parameters according to different optimization methods such as maximum damping,
H2, and H∞ criteria.

� Experimentally validate the PPF on a cantilever beam. The experimental tests are extended
to evaluate the performance of the linear and the nonlinear PPF to damp the vibration of a
geometric nonlinear beam.

� Compare the power consumption of the digital shunt with the PPF.

� Design and develop active-passive (hybrid) control systems using electromagnetic devices.
The novelty is the new combination of active and passive control systems. In addition, the
corresponding parameters are optimized based on the method of maximum damping.

� Design the bladed rail structure as an academic model. Compared to the BluM, it is supposed
to have a similar dynamic behavior but geometrically simpler.

� Optimize the type and the locations of piezoelectric patches on the structures of the bladed
rail and the BluM using numerical finite element method.

� Manufacture the designed bladed rail and mount the piezoelectric patches.

� Experimentally Validate the optimal locations of piezoelectric patches on the BluM.

� Implement different control strategies on the bladed rail numerically.

� Validate the numerical designed control systems on the bladed rail, experimentally.

1.4 Outlines

In this thesis, a summary of my contributions in Maveric project, as explained above, is presented
in 5 chapters:

� Chapter2 studies a passive control system. For this purpose, the electromagnetic shunt
damping is considered and two optimization criteria are employed to tune the parameters of
the shunt circuit. The power consumption of the system is computed when the shunt system
is implemented by the digital system.

� Chapter3 studies different active control systems. It proposes three high performance sys-
tems including resonant force feedback (RFF), positive position feedback (PPF), and non-
linear positive position feedback (NPPF). The optimal parameters will be derived and the
numerical design will be validated experimentally on a cantilever beam. In addition, the PPF
is compared with the digital shunt in terms of the power consumption.

� Chapter4 studies the novel class hybrid control system. In doing so, the passive electromag-
netic shunt damper is combined with either active voltage source and active current source.
The optimal parameters are derived. The performance of the proposed systems is assessed in
terms of the closed loop damping, and the power consumption.

� Chapter5 studies the vibration control of the bladed structures. For this chapter:

– The bladed rail structure is design.

– The locations of piezoelectric patches are optimized on the BluM and the bladed rail.

– The optimal locations of piezoelectric patches are verified experimentally.
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– Different classical control system are designed on the bladed rail numerically.

– The designed control systems are verified experimentally on the bladed rail.

� Chapter6 reviews the conclusions and the perspectives.
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Passive Electromagnetic Shunt
Damper
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Recently, the electromagnetic shunt damper has been proposed as a very simple and effective
passive control technique. The key idea of this technique is to connect a capacitor of capacitance C
and a resistor of resistance R to the electromagnetic transducer of inductance L to form a resonant
RLC circuit. The absorber dissipates the vibrational energy by the resistor and its resonance is
tuned close to the resonance of the primary system thanks to the tuned capacitor [61]. Many
optimization methods have been proposed to optimize the parameters R and C. de Marneffe [62]
optimized the parameters through the method of maximum damping and H∞ minimization when
the system is under base excitation. He has also compared the resonant RLC shunt with a resistive
shunt. Inoue et al. [63] derived the optimal parameters by using the fixed point theory which was
initially proposed by Den Hartog for the mechanical vibration absorber [64]. In [65], the optimal
parameters have been obtained analytically using both the H2 and H∞ optimization methods which
consist in minimizing the root-mean-square (RMS) vibration under random excitation and the peak
amplitude in the frequency domain, respectively. Moreover, Zhu et al. [66] studied the analogy
between the electromagnetic shunt damper and a tuned mass damper (TMD). Then, the optimal
parameters of an electromagnetic shunt have been adapted from the optimal parameters of the
TMD (obtained by Ormondroyd and Den Hartog [67]) by using an equivalent mass, stiffness and
damping coefficient for the electromagnetic shunt damper. The main shortcoming of this method
is that the optimal parameters can be used only when the equivalent mass ratio is small enough
because a full dynamic analogy does not exist.

While simple, the realization of the RC circuit may be challenging. This is because, depend-
ing on the parameters of the system, the required capacitance can be impractically large and the
required resistance can be much smaller than the internal resistance of the coil. The synthetic
impedance is proposed as an alternative solution. The synthetic impedance is realized by the com-
bination of a digital processing unit with a current source. Through the digital processing unit,
the voltage of the device can be sensed first. Then, it is amplified with a filter, which emulates the
admittance of the circuit, to generate the control voltage. Thanks to the external current source,
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2.1. Mathematical modeling

the control voltage turns to the control current. Clearly, this configuration makes a flexible system
to realize any arbitrary impedance only by changing the filter. The advantage of the digital shunt
compared to the passive shunt comes at the expense of the external power source required for the
synthetic impedance. In particular, the external power is required to activate operational amplifiers
(OpAmps) in the system.

In this chapter, first, two optimization techniques, including the method of maximum damping
and the method of maximum power dissipation, are used to tune the parameters of the passive
electromagnetic shunt damper. Then, the digital electromagnetic shunt is studied in terms of the
power consumption of the system. For this purpose, the power consumption of the OpAmp is
derived when it is connected to the electromagnetic transducer. Finally, the power consumption of
the OpAmp is computed when the digital shunt is applied on the electromagnetic transducer.

2.1 Mathematical modeling

Figure 2.1 shows the system under consideration. It is a single-degree-of-freedom (SDOF) oscillator
with a mass m, spring k and an electromagnetic device connected to a resistor of resistance Rs
and a capacitor of capacitance Cs. The system is considered as an undamped SDOF when the
electromagnetic transducer is in open-circuit condition. The system is excited by a disturbance
force fd, and the impulse response of the SDOF system is of interest. The electromagnetic device
which is made of a permanent magnet and a coil has the following parameters: coupling constant
T , coil inductance Lc and coil resistance Rc. It can generate a force fa which is proportional
to the current It flowing inside the coil with a coupling coefficient Ti. In addition, the voltage
across the transducer V is proportional to the velocity of the mass ẋ with a coupling coefficient Te.
Both constants are equal to each other (Ti = Te = T ) thanks to a perfect transmission between
the electrical and the mechanical energy. The coupling constant is equal to the product of the
magnetic flux density B and the length of the coil seen by the magnetic flux [25], i.e. T = 2πnrB,

m

k

fd

fa

xç

Rs Cs
(a)

+

à

m

k

fd
xç

Rs

Cs
Rc

Lc

(b)

Figure 2.1: SDOF oscillator combined with the electromagnetic shunt damper. (a) Mechanical
model and (b) Electrical equivalent model of the transducer.
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CHAPTER 2. PASSIVE ELECTROMAGNETIC SHUNT DAMPER

where n and r are the number of turns in the coil and its radius (considering a cylindrical device),
respectively. The governing equations of motion are written as:

mẍ+ kx = fd + fa (2.1a)

fa = −TIt = −T q̇ (2.1b)

V = Lq̈ +Rq̇ +
1

C
q = T ẋ (2.1c)

where L = Lc, C = Cs, q is the charge flowing inside the coil. For the sake of simplicity, R is
considered as the total resistance of the circuit i.e. R = Rc + Rs (Figure 2.1b). The loop gain
transfer function is now:

L(s) = A(s)×B(s) =
s

m ∗ s2 + k
× T 2s

Ls2 +Rs+ 1
C

(2.2)

where A(s) and B(s) are the sensor-actuator open-loop transfer function and the transfer function
of the controller, respectively.
The Eq. (2.1) can be normalized with respect to the dimensionless time τ = ω0t where ω0 =

√
k/m

as below:

x′′1 + x1 = f − β1ω0x
′
2 (2.3a)

x′′2 + 2ξαx′2 + α2x2 = β2/ω0x
′
1 (2.3b)

where the normalized parameters are:

τ = ω0t, x1(τ) = x(t), x2(τ) = q(t), Ω = ω/ω0, f =
1

k
fd, β1 =

T

k

β2 =
T

L
, β = β1β2, ωf =

1√
LC

, α =
ωf
ω0
, ξ =

R

2

√
C

L

(2.4)

The transfer function of the system from the normalized external force f to the normalized velocity
of the mass ẋ1 is then given by:

ẋ1

f
=

s(s2 + 2ξαs+ α2)

(s2 + 1)(s2 + 2ξαs+ α2) + βs2
(2.5)

where s = jΩ is the Laplace variable. In the remaining of this section, the following numerical
values are used: m=1kg, k = 104N/m, T=1N/Amp and L = Lc = 10−3H. It should be mentioned
that the resistance of the coil Rc is already included in R. According to Eq. (2.5), the passive
control system adds another DOF to the system which makes the closed-loop response have two
pairs.

2.2 Optimization based on maximum damping method

In this section, the method of maximum damping is used to optimized the parameters of the passive
elements. The root-locus of the system (Eq. (2.2)) is shown in Figure 2.2 for different values of
the resistance R and the capacitance C. Basically, the locus consists of two loops starting from the
pole of the primary system (P0) and the pole of the resonant shunt (P1 or P2 or P3), respectively.
One of the loop goes to the origin and the other one goes to infinity. Considering the method of
maximum damping, it can be observed that the maximum closed-loop damping can be realized
when both loops are intersecting at one point (Figure 2.2c). In other words, two closed-loop poles
(�) are merged together. It is worth pointing out that the values of the R and C are taken arbi-
trarily to observe the different possible root locus curves. Considering the value of the resistance
and capacitance corresponding to Figure 2.2c as the optimum ones, Figure 2.2a shows a typical
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2.2. Optimization based on maximum damping method

root locus of the system when a higher value of the resistance or a lower value of the capacitance
is taken. For a lower value of the resistance or a higher value of the capacitance, the typical root
locus of the system is shown in Figure 2.2b.

The normalized transfer function, when two closed-loop poles are merged, can be simplified as:

ẋ1

f
=
s(s2 + 2ξαs+ α2)

(s2 + 2ηγs+ γ2)2
(2.6)
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Figure 2.2: Root-locus of the system shunted with the passive circuit and different values of the
resistance R and capacitance C (P0: pole of the primary system; P1: pole of the controller using a
higher value of R or a lower value of C; P2: pole of the controller using a lower value of R or a higher
value of C; P3: pole of the controller using optimum values of the resistance and capacitance; ©:
zero of the controller; �: pole of the closed-loop system tuned based on the method of maximum
damping)
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where η is the damping ratio, ωc, and γ = ωc/ω0 are the resonance frequency and the normalized
resonance frequency of the closed-loop response function, respectively. By matching the polynomial
coefficients of the denominators of Eq. (2.5) and Eq. (2.6), the set of equations can be obtained as
below:

4ηγ = 2ξα (2.7a)

4η2γ2 + 2γ2 = α2 + β + 1 (2.7b)

4ηγ3 = 2ξα (2.7c)

γ4 = α2 (2.7d)

From Eqs. (2.7a), (2.7c) and (2.7d), it can be concluded that

γopt = αopt = 1 (2.8)

which means that the optimal frequency of the circuit and the closed-loop resonance frequency of
the system are equal to the resonance frequency of the primary system. Considering the above
equation, η can be obtained as a function of ξ from Eq. (2.7a) (η = 1

2ξ). Substituting this equation
and Eq. (2.8) to Eq. (2.7b) yields:

ξopt =
√
β (2.9)

As a consequence, the optimal parameters of resistance and capacitance can be obtained as:

Copt =
1

Lω2
0

(2.10a)

Ropt =
2T√
kCopt

(2.10b)

Figure 2.3 shows the closed-loop damping ratio of the system (Eq. (2.5)) against the variation of
the resistance R and capacitance C, individually, normalized with respect to their optimal values.
Note that one parameter is kept constant when the other one is varied. As it can be seen, the only
values which can realize the maximum damping are only the optimal values.
Figure 2.4a shows the frequency response for five different values of the resistance R when the
capacitance C is set to its optimal value and kept constant. All the curves are intersecting at two
points which are called fixed-points. For R < Ropt, two resonances appear in the vicinity of the
resonance frequency of the primary system. The controller is no longer effective in the terms of
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Figure 2.3: Closed-loop damping ratio of the system against the variation of the shunt elements
i.e. resistance R and capacitance C normalized with respect to their optimal values
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Figure 2.4: For the attached passive RC circuit, (a) frequency response as well as (b) the impulse
response for different values of R
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Figure 2.5: For the attached passive RC circuit, (a) frequency response as well as (b) the impulse
response for different values of C

amplitude reduction when R→ 0. In addition, the performance degradation can also be observed
when R > Ropt. Especially when R → ∞, the controlled system acts like a primary system with
no additional damping. By using the method of maximum damping to optimize the parameters of
the controller, the settling time of the transient response of the system to the impulse disturbance
should be minimized. To verify this fact, the impulse response in the time domain is also shown
in Figure 2.4b for three different values of R. As it can be seen, the minimum settling time can be
achieved by considering the designed optimal value of R obtained in Eq. (2.10b).

Figure 2.5a shows the frequency response for five different values of the capacitance C. Note
that the value of R is set to its optimum and kept constant. The evidence of the performance
degradation can be seen by a deviation from the optimal capacitance Copt. It is wroth pointing out
that the amplitude of the resonance exhibits one peak when the parameters are optimally tuned
according to Eq. (2.10). However, mistuning leads to the increase of one peak accompanied by the
reduction of the other one. Figure 2.5b also demonstrates the impulse response of the system for
three different values of the capacitance C. Minimum settling time occurs only when the capaci-
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CHAPTER 2. PASSIVE ELECTROMAGNETIC SHUNT DAMPER

tance is set to its optimum.

Consequently, the passive shunt system as a frequency dependent control system is less robust
to resonance uncertainty. Some studies have introduced different strategies to online adapt the
parameters of the passive shunt to ensure the tuned frequency of the vibration absorber tracks
the excitation frequency. More details are presented in [68, 69]. An alternative solution to online
adaptation is to employ a broadband vibration absorber such that the system can tolerate a high
level uncertainty, which is of interest in the present work. In the next sections, we propose two
different hybrid control systems based on active voltage and current sources. One of the advantage
of the proposed hybrid system is to make the system robust to resonance uncertainty.

2.3 Optimization based on maximum power dissipation

In this section, the parameters of the passive shunt are tuned based on maximum power absorption.
The power can be derived both in time and frequency domains. However, according to the Parseval’s
theorem, the root mean square value (RMS) of a signal in time domain is equal to the RMS value
of the signal in frequency domain [70]. This means that the RMS value of the power in time and
frequency domains are the same. In Appendix A, the Parseval’s theorem is proved mathematically
for the power and an example is presented to illustrate the theory. In the following section, we use
the power in frequency domain for the optimization process. The power which flows at the interface
of the structure and the actuator device can be written in frequency domain P (jω) as [71]:

P (jω) = fa(jω)× v∗(jω) (2.11)

where superscript ∗ shows the complex conjugate transpose and v(jω) == ẋ(jω) is the velocity of
the mass in frequency domain, respectively. According to the set of Eq. 2.1, the actuator force
fa(jω) and the velocity of the mass v(jω) can be obtained as follow:

fa(jω) =
T 2jω

−Lω2 +Rjω + 1
C

G(jω)fd(jω) (2.12)

and
v(jω) = G(jω)fd(jω) (2.13)

where G(jω) is:

G(jω) =
v(jω)

fd(jω)
=

jω(−Lω2 +Rjω + 1
C )

(−mω2 + cjω + k)(−Lω2 +Rjω + 1
C )− T 2ω2

(2.14)

By substituting Eqs. (2.12)-(2.14) into Eq. 2.11, the power can be re-written in frequency domain
after some manipulations as:

P (jω) = T 2jω3(−Lω2 −Rjω +
1

C
)

·

∣∣∣∣∣ 1

(−mω2 + cjω + k)(−Lω2 +Rjω + 1
C )− T 2ω2

∣∣∣∣∣
2

· |fd(jω)|2 (2.15)

The real part of P (jω) is called the active power which corresponds to the dissipative behavior
and the imaginary part is named the reactive power which corresponds to the energy exchanged
between the device and the structure. The average active power Pac can be written as:

Pac =
1

2
<(P (jω)) =

1

2

∣∣∣∣∣ T
√
Rω2

(−mω2 + cjω + k)(−Lω2 +Rjω + 1
C )− T 2ω2

∣∣∣∣∣
2

= |H(jω)|2 · |fd(jω)|2 (2.16)
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2.3. Optimization based on maximum power dissipation

Figure 2.6: The normalized means square value of the active power I against the large variation of
the resistance R and capacitance C

The mean square value of the active power can be written as:

E[|Pac|] =

∫ ∞
−∞
|H(jω)|2 Sd(ω)dω (2.17)

where E[ ] denotes the expectation value. Sd(ω) is the power spectral density of the input distur-
bance force which can be calculated as:

Sd(ω) = |fd(jω)|2 (2.18)

For the case of white noise excitation force, the Sd(ω) is constant as a function of frequency
(Sd(ω) = Sd). Therefore, the mean square value of the power can be simplified as:

E[|Pac|] = Sd

∫ ∞
−∞
|H(jω)|2 dω (2.19)

The normalized mean square value I is defined to represent the ratio of the active power to the
excitation force with a uniform spectrum density like:

I =
E[|Pac|]
Sd

=

∫ ∞
−∞
|Pac| dω =

∫ ∞
−∞
|H(jω)|2 dω (2.20)

Substituting Eq. (2.18) in to Eq. (2.20) and using the analytical expression in [72]:

I =
(Rk + c

C )T 2R

(Rk + c
C )(−(Rk + c

C )mL+ (Lk + m
C + T 2 + cR)(Lc+Rm))− k (Lc+Rm)2

C

(2.21)

To maximize the total power absorbed by the electromagnetic shunt damper, the following condi-
tions have to be satisfied:

dI

dR
= 0 (2.22a)

dI

dC
= 0 (2.22b)
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Figure 2.7: Frequency response function for control off and on

which leads to:

Copt =
m

kL
(2.23a)

Ropt = T

√
L

m
(2.23b)

Interestingly, the optimal capacitance is exactly equal to the optimal capacitance obtained ac-
cording to the method of maximum damping. This means that no matter which optimization is
employed, the electrical network is resonating at the same frequency which is equal to the resonance
frequency of the primary system. On the other hand, this optimal value of the resistance is two
times lower than of the optimal resistance which is obtained based on the method of maximum
damping.

Figure 2.6 show the normalized mean square value I as a function of resistance R and capacitance
C. One sees that only the optimal parameters can maximize the power absorption. Furthermore,
Figure 2.7 shows the frequency response function from the disturbance force to the velocity of the
mass. It compares the response for both control off and on.

2.4 Digital electromagnetic shunt damper

For the system under consideration shown in Figure 2.1, the optimal value of the capacitance is
100mF and the optimal value of the resistance are 63.2mΩ, and 31.6mΩ according to the method of
maximum damping, and the method of maximum power dissipation, respectively. In the market, it
is almost impossible to find the capacitor and the resistor with the right impedance. Therefore, it
is proposed to realize the damping system by means of digital system. In this case, the voltage of
the electromagnetic device needs to be measured and thanks to an operational amplifier (OpAmp),
a current proportional to the current flowing inside the virtual shunt circuit is generated and sent
to the actuator. Since the OpAmps requires an external power for its operation, the digital shunt
can be seen as an active control system. Therefore, the power which is consumed by the OpAmp
becomes an important key. In the following section, we will study the power budget for an OpAmp.
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Figure 2.8: Schematic of the synthetic impedance.

2.4.1 Power consumption for an OpAmp

The schematic of the OpAmp is shown in Figure 2.9. V + and V − are the input voltages. Vout is
the output voltage. VCC and VEE are the power supply voltages. Figure 2.10 shows the general
use of the OpAmp connected to the electromagnetic transducer as an actuator. From the figure,
one sees that a power is generated by the power supply Psupply and distributed to the OpAmp and
the load which is the transducer in this case. Therefore, the balance of the the total power reads:

Psupply = POpAmp + Pload (2.24)

where POpAmp and Pload are the power of the OpAmp and the power of the load, respectively. We are
interested in the power dissipation or consumption which causes self heating. There are two main
sources of the power consumption by the OpAmp. The first one is caused by the quiescent current
IQ which OpAmp requires for the internal operation in the no-load or steady-state situation. The

Figure 2.9: Schematic of the OpAmp.
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CHAPTER 2. PASSIVE ELECTROMAGNETIC SHUNT DAMPER

Figure 2.10: Schematic of the OpAmp connected to the electromagnetic transducer as an actuator.

quiescent current is equal to the current flowing inside the terminal of the supply (IQ = IEE = ICC).
Therefore, the corresponding power consumption can be obtained by the product of the quiescent
current IQ flowing from VCC terminal to the VEE terminal and the difference in potentials between
the two terminals as:

PQ = IQ × (VCC − VEE) (2.25)

This power is always dissipative as long as the supply power is applied on the OpAmp even when
there is no output current (Iout = 0). The second source of the power consumption is caused by
the output current Iout which flows inside the transducer. Generally, the output current can be
modeled as the source and sink. In the case of output source current, the current is flowing from
VCC to Vout. Thus, the power of the load can be written as:

Pout = Psource = Isource × (VCC − Vout) (2.26)

And for the case of the output sink current, the current is flowing from Vout to VEE . Subsequently,
the power of the load is:

Pout = Psink = Isink × (Vout − VEE) (2.27)

Therefore, the balance of the power only for the OpAmp can be considered as the summation of
the quiescent power and the output power as:

POpAmp = PQ + Psource = 2IQVCC + Isource × (VCC − Vout) (2.28a)

POpAmp = PQ + Psink = 2IQVEE + Isink × (Vout − VEE) (2.28b)

It is possible to define the source Isource and the sink current Isink as the function of the output
current Iout based on its sign as:

if Iout > 0→ Isource = Iout (2.29a)

if Iout < 0→ Isink = −Iout (2.29b)

By considering VCC = −VEE and the above equations, the power of OpAmp can be re-written as:

POpAmp = 2IQVCC + Iout × (VCC − Vout), Iout > 0 (2.30a)

POpAmp = 2IQVCC − Iout × (Vout + VCC), Iout < 0 (2.30b)
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2.4. Digital electromagnetic shunt damper

After some manipulations, the above equation can be simplified as:

POpAmp = 2IQVCC + |Iout|VCC − VoutIout (2.31)

Interestingly, the above equation is align with the Eq. (2.24). The summation of first two terms in
the right hand side of the equation shows the power generated by the power supply Psupply and the
last term is equal to the power of the load Pload = Pout. The first term corresponding to quiescent
power is always constant. However, different control strategies mainly changes the next two terms.
From Eq. (2.1), the voltage and current can be written proportional to the velocity of the mass
and the actuator force, respectively. Therefore, the output power of the amplifier can be obtained
as:

POpAmp = 2IQVCC +
|fa|
T
VCC + ẋfa (2.32)

Depending on the type of controller, fa and ẋ are different, and subsequently, the instantaneous
power could have only real part or both real and imaginary parts. The real part of this power is
called the active power Pac and the imaginary part is called the reactive power Pre. The active
power assesses the dissipative behavior and the reactive power shows the difference between the
kinetic and the potential energy. The active power is said dissipative if it has a positive value.
Note that the reactive power exchanges between the transducer and the power supply and does not
represent the dissipation aspect. In this study, we only interested in the dissipated power which
causes self-heating. The first two terms are always positive real values. Therefore, by taking the
half of the real part of the last term, the active power of the OpAmp can be computed in frequency
domain as follows:

POpAmp = 2IQVCC +
|fa(jω)|

T
VCC +

1

2
<(fa(jω)ẋ(jω)) (2.33)

In the following section, the power dissipation of the OpAmp, when the electromagnetic transducer
is shunted with RC elements, is studied. In Section 2.3, fa(jω) and ẋ(jω) has been already derived
and they are not shown here again. According to the datasheet of the used OpAmp, the quiescent
current is IQ = 3.2mA and the voltage of the power supply is kept constant at VCC = 10V.
The active power of the OpAmp is presented in Figure 2.11 when the shunt elements are tuned
according to the method of maximum damping. Clearly, the active power always possess a positive
value in the whole frequency range which shows the system is dissipative. It can be seen that
the maximum power dissipation appears around the resonant frequency due to the application of
resonant shunt system. Subsequently, far from the resonance frequency, the amplitude of the power
is only dominated by the quiescent power which is equal to 0.064Nm/s.
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Figure 2.11: Power dissipation of the electromagnetic transducer when it is shunted with RC
elements.
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2.5 Conclusions

The passive shunt damper has been studied in this chapter. The RC shunt has been used in series
to an electromagnetic transducer with an inductance L to make RLC circuit. The parameters of
resistance and capacitance have been optimized based on two different criteria i.e. the method of
maximum damping and the method of maximum power absorption.

It has been also shown that it is not always possible to realize the passive shunt elements including
the resistor, and the capacitor in practice. A well-known alternative solution has been introduce
to implement the shunt technique by means of the digital system where an operational amplifier
(OpAmp) is required. Therefore, the digital shunt can be seen as an active control system. Because
an external power source is required for the operation of the OpAmp, its power consumption has
been derived and computed when the digital system is applied.
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From Chapter 2, it can be concluded that the optimal closed-loop damping is ηopt = T/(2
√
kL)

using electromagnetic shunt damper. This shows that the stiffness of the structure k as well as
the coupling constant T and the inductance of the transducer L limit the maximum achievable
damping obtained by the passive control system. Although the use of a negative inductance has
been proposed to artificially reduce the inductance of the circuit and subsequently increase the
maximum achievable damping ratio, the closed-loop system is conditionally stable [73, 74, 75].

Another limitation was to realize the RC circuit fully passively for some systems since the re-
quired impedance of the shunt elements was impossible to obtain in practice. Therefore, the shunt
system has been implemented by means of the digital system. However, the price to pay was the
required external power which consumes by the operational amplifier (OpAmp). In fact, the digital
shunt can be seen as an active control system when the electromagnetic transducer is used as both
sensor and actuator. Using an individual sensor combined with the electromagnetic transducer or
the piezoelectric transducer as an actuator makes a configuration of an active control system which
is able to improve the control performance. This chapter studies the use of different active control
systems and evaluates the control performance in terms of the vibration attenuation, the stability,
and the robustness to resonance uncertainty.

The choice of the active control configuration is highly dependent on the type of sensor and actua-
tor. In this thesis, we are interested in two configurations. They include the force sensor collocated
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3.1. Resonant force feedback control system

with the force actuator as well as the displacement sensor collocated with the reactive fore actuator.
In Section 3.1, the first configuration i.e. force sensor collocated with the force actuator is studied.
In Sections 3.2 and 3.3, the second configuration i.e. the displacement sensor collocated with the
reactive force actuator is studied for linear and nonlinear vibration, respectively.

3.1 Resonant force feedback control system

Integral-force-feedback (IFF) is a popular control law in active vibration damping of mechanical
system when a force sensor is collocated with a force actuator. While it is simple, robust to reso-
nance uncertainty and stable for any feedback gains, its efficiency is limited by system’s parameters
and in particular the stiffness ratio between the structure and the actuator. Therefore, the control
authority decreases at high frequency resonances or when the actuator is weakly coupled to the
structure. It has been shown that the use of double integrator with a real zero, named α-controller,
can improve the control authority of a target mode. However, this technique like IFF cannot be
easily implemented in practice because of low frequency saturation issue induced by significantly
amplifying the low frequency content during the integration process.. The following section proposes
a new control law, named resonant-force-feedback (RFF), based on a second order low pass filter to
damp a target mode resonance. The mechanical analogy of the proposed system is first derived and
then the parameters of RFF are optimized based on two methods i.e. maximum damping criterion
and H∞ optimization which consists in minimizing the settling time of the impulse response and
the peak amplitude in the frequency domain, respectively. The control performance of RFF in
terms of vibration attenuation, stability, and robustness is compared to IFF and α-controller.

3.1.1 Mathematical model and analysis

Fig. 3.1 shows the system under study which includes a SDOF oscillator with a mass m and a
stiffness k combined with a force actuator Fa and a collocated force sensor Fs. The actuator possess
an internal stiffness ka which is in parallel with the main stiffness of the structure. The system is
excited by a disturbance force Fd. When the active control is turned off, the SDOF is assumed
to be undamped for the sake of simplicity. The governing equations of motion in Laplace domain

m

k

x

ka H(s)

Fs

Fa

Fd

Figure 3.1: Mechanical diagram of the system under consideration including a SDOF system cou-
pled with a force sensor and a force actuator.
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Table 3.1: Optimal parameters of the system using IFF

Parameters Maximum damping [76] H∞ [77]

gopti Ω0

√
Ω0
ω0

√
Ω2

0+ω2
0

2

Optimized parameter ξopt = Ω0−ω0
2Ω0

| xFd
|max = 1

m
4

(Ω2
0−ω2

0)

read:

(ms2 + k)x = Fd + Fs (3.1a)

Fs = Fa − kax (3.1b)

where s and x are the Laplace variable and the displacement of the mass. Therefore, the transfer
function from the actuator to the sensor, when the feedback loop is open, can be derived as:

G =
Fs
Fa

=
ms2 + k

ms2 + k + ka
(3.2)

which contains a zero ω0 =
√

k
m , representing the resonance frequency of the system when the force

sensor is removed, and a pole Ω0 =
√

k+ka
m , representing the resonance frequency of the coupled

system. In addition, the control force Fa is formed like:

Fa = −H(s)Fs (3.3)

where H(s) is the control law.

IFF

A classical control law to damp the resonance of the system is known as IFF which includes an
integrator with the gain gi as:

H(s) =
gi
s

(3.4)

The optimal value of the feedback gain has been already derived analytically based on the maximum
damping criterion [76] and H∞ optimization [77] as shown in Table 3.1. According to it, it can
be concluded that the maximum achievable damping ξoptc rapidly decreases and subsequently the
minimal maximum of the response | xFd

|max increases under two conditions. One is for high frequency
resonance and the other one is when the actuator is weakly coupled to the structure which leads
to a close location of the frequency of the pole Ω0 and the zero ω0.

α-controller

To improve the control authority, Chesné et al. [50] proposed a new control law which includes
double integrator and a real zero as shown below:

H(s) =
ga(s+ αa)

s2
(3.5)

where ga and αa are its feedback gain and the tuning frequency of its zero. These parameters
have been optimized based on the method of maximum damping [50] and H∞ approach [11] as
expressed in Table 3.2. It can be clearly concluded that for a primary system, α-controller provides
a higher closed-loop damping ratio ξopt and subsequently a lower maximum amplitude of response
| xFd
|max than the classical IFF when the parameters are optimized based on the method of maximum

damping and H∞ approach, respectively.
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RFF

In order to avoid a significant amplification of the low frequency content which can be induced by
the IFF and the a-controller due to the pure integration, we propose another control law based on
a second order filter like:

H(s) =
gfω

2
f

s2 + 2ξfωfs+ ω2
f

(3.6)

where gf is the feedback gain, ξf and ωf are the damping ratio and the tuning frequency of the
controller. In this case, the actuator is driven by an active damping force which is generated by
making the signal proportional to the force applied to the structure resonate. By substituting Eq.
(3.6) into Eq. (3.1), the driving point receptance of the system can be obtained as:

x

Fd
=

s2 + 2ξfωfs+ ω2
f + gfω

2
f

m
(

(s2 + ω0)(s2 + 2ξfωfs+ ω2
f + gfω

2
f ) + (Ω2

0 − ω2
0)(s2 + 2ξfωfs+ ω2

f )
) (3.7)

In the reminder of this section, the following numerical values are used: m=1kg, k=ka=1N/m,
ka = 0.1k. In the following sections, mechanical analogies for IFF, α-controller and RFF are
first proposed and then two tuning laws based on maximum damping criterion and H∞ theory
are employed to optimize the parameters of RFF. These include the damping ratio ξf , the tuning
frequency ωf and the feedback gain gf .

Mechanical analogy

The active mount of the system under consideration is schematically shown in Fig. 3.2a. Consid-
ering the Maxwell analogy, force and velocity in the mechanical domain are variables analogous to

Table 3.2: Optimal parameters of the system using α-controller

Parameters Maximum damping [50] H∞ [11]

gopta 2
√

Ω2
0 − ω2

0

√
3(Ω2

0−ω2
0)

2

αopta
ω2
0

2
√

Ω2
0−ω2

0

3ω2
0−Ω2

0√
6(Ω2

0−ω2
0)

Optimized parameter ξopt =

√
Ω2

0−ω2
0

2ω0
| xFd
|max =

√
2ω2

0

Ω2
0−ω2

0

ka H(s)

Fs

Fa

F

F

(a)

ka

F

F

Zeq

(b)

F

F

Ceq

ka

(c)

F

F

Ceq

ka

meq

(d)

F

F

Ceq

ka

keq meq

(e)

Figure 3.2: (a) Schematic of the active mount. (b) Its equivalent mechanical model. (c) The
equivalent mechanical model when IFF is used. (d) The equivalent mechanical model when α-
controller is used [11]. (e) The equivalent mechanical model when RFF is used.
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voltage and current in the electrical domain, respectively. Therefore, its total mechanical impedance
can be obtained by substituting Eq. (3.3) into Eq. (3.1) as:

ZT1 =
F

ẋ
=

ka
s+ s×H(s)

(3.8)

As presented in Fig. 3.2b, an equivalent mechanical system of the active mount can be exposed as
an equivalent impedance Zeq in series to an additional stiffness representing the internal stiffness
of the actuator ka. For such system, the mechanical impedance is given by:

ZT2 =
F

ẋ
=

ka

s+ ka
Zeq

(3.9)

Therefore, the equivalent impedance is obtained by equating Eq. (3.8) and (3.9) as:

Zeq =
ka

s×H(s)
(3.10)

The equivalent impedance, when IFF is used, is calculated by substituting Eq. (3.4) into the above
equation like:

ZIFFeq =
ka
gi

= Ceq (3.11)

which presents an equivalent impedance of an viscous damper Ceq. As shown in Fig. 3.2c, the
mechanical model of the active mount, when IFF is implemented, exhibits the same dynamic
system as a relaxation isolator. Thus, the classical IFF can be seen as the active realization of the
relaxation isolator. Similar study to realize this dynamic system with an electromagnetic transducer
connected to a RL circuit has been introduced in [37].
To attain the equivalent impedance of α-controller, Eq. (3.5) is substituted into Eq. (3.10) as:

Zαeq =
kas

ga(s+ αa)
=

meqCeqs

meqs+ Ceq
(3.12)

which represents an equivalent impedance of an inertance meq in series to a viscous damping Ceq.
In this case, the mechanical model of the active mount can be considered as tuned-inerter-damper
(TID) as shown in Fig. 3.2d. Therefore, α-controller can be seen as the active realization of TID,
i.e. ATID. ATID has been exclusively discussed in [11].
For RFF, the equivalent impedance is obtained by substituting Eq. (3.6) into Eq. (3.10) like:

ZRFFeq =
ka
gfω

2
f

s+
2ξfka
gfωf

+
ka
gfs

= meqs+ Ceq +
keq
s

(3.13)

which indicates an equivalent impedance of an inertance meq = ka
gfω

2
f

in parallel to a viscous damping

Ceq =
2ξfka
gfωf

as well as a stiffness keq = ka
gf

as shown in Fig. 3.2e. Clearly, it can be considered

as an inerter-spring-damper system known as ISD. Thus, RFF can be seen as active realization
of ISD. Note that ISD has been used in vibration isolation [78], vehicle suspension [79], railway
vehicle suspension [80], aircraft landing gear suspension [81]. From Eq. (3.13), gf , ξf and ωf can
be obtained as a function of meq, Ceq and keq as:

gf =
ka
keq

, ξf =
Ceq

2
√
meqkeq

, ωf =

√
keq
meq

(3.14)

where ωf and ξf can be seen as the natural frequency and the damping ratio of ISD, respectively.
gf also shows the stiffness ratio between ka and keq. One sees that ISD behaves like a rigid body
motion with infinite mass, damping and stiffness when g → 0. Subsequently, it is no longer effective
for vibration control and the coupled system resonates at Ω0. For g →∞, all the parameters of ISD
become zero. Since the stiffness ka is placed in series to ISD, the whole branch becomes ineffective.
Thus, the resulting resonance of the coupled system is the same as the primary system when the
active mount is removed i.e. ω0.
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Figure 3.3: Typical root-locus of the system coupled with RFF when the tuning frequency and the
damping ratio of RFF are set to (a) lower values than those of local optimal case, (b) higher values
than those of local optimal case, (c) their local optimal case, (d) their optimal case. (• shows the
closed-loop poles)

3.1.2 Maximum damping optimization of the absorber

In this section, the parameters of the controller are optimized based on the method of maximum
damping which consists in minimizing the settling time of the impulse response. Fig. 3.3 shows the
root-locus of the loop gain (i.e. G ×H) choosing different control parameters. One sees that the
controller adds another set of poles to the resulting closed-loop system. Depending on the value of
the feedback gain gf , the closed-loop poles can move individually on two loops starting from the
pole of the system as well as the pole of the controller. In addition, the location of the controller
pole in the locus is a function of the damping ratio ξf and tuning frequency ωf of the controller
which leads to different shape of the loops. By comparing Fig. 3.3c with Figs. 3.3a and 3.3b, it
can be concluded that the damping of the closed-loop system is locally maximized when the two
loops intersect at one point. In this case, the closed-loop poles are merged at the intersection. It
is possible to realize an identical closed-loop poles for different target damping by properly tuning
the parameters of RFF. This can be seen from Fig. 3.3c and Fig. 3.3d that the controller which
realizes equal closed-loop poles is not unique. However, there is only one controller which makes
the loops as large as possible and this occurs when the controller pole is critically damped (i.e.
ξoptf = 1). It should be also noted that the closed-loop system is unconditionally stable for any
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value of feedback gain, damping ratio and tuning frequency. Similar approach has been used to
optimize the parameters of positive-position-feedback (PPF) control system in [82]. It is worth
pointing out that the values of ωf , ξf and gf are taken arbitrarily to observe the different possible
root locus curves in Fig. 3.3. Considering the values of ξf and ωf corresponding to Fig. 3.3c as
the local optimum ones, Fig. 3.3a shows a typical root locus of the system when a lower value of
ξf or ωf is taken. For a higher value of ξf or ωf , the typical root locus of the system is shown in
Fig. 3.3b.
The driving point receptance of the system when the two poles are merged is given by:

x

Fd
=
s2 + 2ξfωfs+ ω2 + gfω

2
f

(s2 + 2ξcωcs+ ω2
c )

2
(3.15)

where ξc and ωc are the damping ratio and the resonance frequency of the closed-loop system,
respectively. The following equations are obtained by equating the characteristic polynomial coef-
ficients of Eqs. (3.7) and (3.15).

4ξcωc = 2ξfωf (3.16a)

(4ξ2
c + 2)ω2

c = (gf + 1)ω2
f + Ω2

0 (3.16b)

4ξcω
3
c = 2ξfωfΩ2

0 (3.16c)

ω4
c = gfω

2
fω

2
0 + ω2

fΩ2
0 (3.16d)

Substituting Eq. (3.16a) into Eq. (3.16c) considering ξf = ξoptf = 1 leads to:

ωc = Ω0 (3.17)

which means that the resonance frequency of the closed-loop system is the same as the resonance
frequency of the system when the feedback loop is open. From Eq. (3.16a), the closed-loop damping
ratio can be obtained as a function of tuning frequency of the controller as ξc =

ωf

2Ω0
. Therefore,

by substituting it into Eqs. (3.16b) and (3.16d) and solving the resulting equations for the tuning
frequency of the controller and the feedback gain, the corresponding optimal parameters of the
controller can be derived as:

ωoptf =
√

Ω2
0 − ω2

0 (3.18a)

goptf =
Ω2

0

Ω2
0 − ω2

0

(3.18b)
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Figure 3.4: Minimum closed-loop damping ratio of the system against the variation of the param-
eters of RFF normalized with respect to their optimal parameters.
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And subsequently the closed damping ratio can be obtained:

ξoptc =

√
Ω2

0 − ω2
0

2Ω0
(3.19)

Figs. 3.4 presents the minimum closed-loop damping ratio of the system against the variation of
parameters of RFF normalized with respect to their optimal values. Note that when one parameter
changes, the other parameters are set to their optimal values. It can be clearly seen that only the
optimal parameters provide maximum damping.

As it was already mentioned at the beginning of the section 3.1.2, the goal of the optimization is
not only to maximize the closed-loop damping but also to minimize the settling time of the impulse
response. Therefore, Fig. 3.5a shows the impulse response of the system for ξf/ξ

opt
f : 1/1.3, 1, 1.3

while the tuning frequency ωf and the feedback gain gf are set to their optimal values. Further-
more, the impulse response is demonstrated in Fig. 3.5b for ωf/ω

opt
f : 1/1.3, 1, 1.3 when ξ and gf

are fixed at their optimal values. In addition, for gf/g
opt
f : 1/1.3, 1, 1.3 when ξf and ωf are kept

at their optimal values, Fig. 3.5c illustrates the impulse response. It can be seen that only the
optimal values of ωf and gf realize the minimum settling time. However, for the case of ξf , a lower
value offers a better settling time. To better illustrate this issue, the settling time is shown in Fig.
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Figure 3.5: Impulse response of the coupled system with RFF for different values of (a) damping
coefficient ξf , (b) tuning frequency ωf and (c) feedback gain gf .
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Figure 3.6: (a) Settling time as a function of the variation of the parameters of RFF normalized
with respect to their optimal values, (b) a zoom from 0 to 100 seconds.

3.6 when the parameters of RFF are varied. 15% reduction in the settling time happens when the
damping ratio ξf is 10% lower than the optimal value. At this stage, it is not very clear the reason
for not having minimum settling time with the maximum damping. Although, this can be related
to the fact that the settling time can be dominated not only by the damping ratio but also by the
resonance frequency of the system. It gets even more complicated to estimate since the resulting
closed-loop system contains two poles with the same damping ratio but different resonance fre-
quencies (according to Fig. 3.3a) when the damping ratio of RFF gets detuned to a lower value.
The damping ratio and resonance frequency of both poles can affect the settling time. Therefore,
a more careful analysis needs to be done in the future to provide more detail in this subject.

On the other hand, this phenomenon only happens when ka
k < 0.5. For example when ka

k = 0.5,
the minimum closed-loop damping ratio and the settling time are plotted against the normalized
parameters of RFF in Figs. 3.7a and 3.7b, respectively. Obviously, the optimal parameters not only
realize the maximum damping but also the minimum settling time. Comparing the performance
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Figure 3.7: Under the variation of the parameters of RFF normalized with respect to their optimal
parameters when ka

k = 0.5, (a) minimum closed-loop damping ratio and (b) settling time.
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Figure 3.9: (a) Root-locus of the system coupled with α-controller, (b) a zoom on a real axis from
-0.5 to 0.

of the system in terms of the settling time and the minimum closed-loop damping ratio under
deviations of the parameters of RFF from the optimal values (Figs. 3.4-3.7), it can be concluded
that the performance of RFF is highly sensitive to the variation of the tuning frequency ωf . In
other words, it shows how robust RFF is under the resonance uncertainty which will be further
discussed in Section 3.1.5.
Fig. 3.8a shows the FRF of the performance index with and without control systems. It also com-
pares the performance of RFF with IFF [76] and α-controller [11] when they are optimized based on
the method of maximum damping. In order to reveal the difference of using RFF in comparison to
IFF and α-controller, Fig. 3.8b presents the evolution of the maximum closed-loop damping ratio
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under the variation of the stiffness ratio ( kka ). It is explicitly obvious that RFF and α-controller add
more damping to the structure in comparison to the one with IFF. The out-performance occurs
since both RFF and α-controller introduce an anti-resonance to the primary system allowing a
better interaction between the actuator and the primary structure. Considering lightly damped
structures where the primary system possess 1% or less damping ratio, it can be concluded that
IFF is no longer effective when the stiffness ratio is lower than 5%. However in this case, RFF and
α-controller can add at least 10 times greater damping ratio. Another interesting observation is
that both RFF and α-controller provide a very close damping ratio especially when the stiffness
ratio is low, i.e. ka

k < 0.2. This can be seen by the root-locus of the system when α-controller is

implemented as shown in Fig. 3.9 for ka
k = 0.1. It shows that the maximum achievable damping

ratio, which occurs when the two loops are interesting at one point, is about 15.8%; while RFF can
realize 15.1% damping ratio according to Fig. 3.3d. More details on the root-locus of the system
coupled with the α-controller under the deviation of its parameters can be found in [50]. Although
the α-controller gives a slightly better control authority when ka

k > 0.2, the difference is not ma-

jor. For example, if ka
k = 1, the closed-loop damping ratios provided by RFF and α-controller are

0.35 and 0.5, respectively. This slightly better damping ratio provided by α-controller affects the
stability of the system in terms of phase margin which will be discussed in Section 3.1.5.

3.1.3 H∞ optimization of the absorber

Another tuning method based on H∞ optimization is used in this section to optimize the parameters
of the controller. The optimization is known as an approximation of fixed-point theory which has
been introduced by Den Hartog [64] to optimally design parameters of tuned-mass-damper (TMD)
system. The optimization aims to minimize the response at the fixed-points. The fixed-points are
defined as those frequencies where the magnitude of the deriving point receptance of the system
is invariant with respect to the damping coefficient of the controller ξf . The magnitude of the
frequency response of the driving point receptance is taken as the performance index and it is given
by substituting s = jω into Eq. (3.7) as:

| x
Fd
| =

√
ω4 + (4ξ2

fω
2
f − 2gfω

2
f − ω2

f )ω2 + (gf + 1)ω4
f

m
√
D8ω8 +D7ω7 +D6ω6 +D5ω5 +D4ω4 +D3ω3 +D2ω2 +D1ω +D0

(3.20a)

D8 =1;D7 = D5 = D3 = D1 = 0

D6 =2(2ξ4
f − gf − 1)ω2

f − 2Ω2
0

D4 =(gf + 1)2ω4
f − (8ξ2

fΩ2
0 − 2gf (Ω2

0 + ω2
0)− 4Ω2

0)ω2
f + Ω4

0

D2 =(4ξ2
fΩ4

0 − 2gfω
2
0Ω2

0 − 2Ω4
0)ω2

f − (2g2
fω

2
0 + 2gf (Ω2

0 + ω2
0) + 2Ω2

0)ω4
f

D0 =(gfω
2
0 + Ω2

0)2ω4
f

The fixed-point frequencies are obtained by differentiating the above equation with respect to the
damping coefficient ξf and equating the derivative to zero, which yields:

Ω1 =
1√
2

√
(gf + 1)ω2

f + Ω2
0 −

√
(gf + 1)2ω4

f − 2gfω
2
0ω

2
f − 2Ω2

0ω
2
f + Ω4

0 (3.21a)

Ω2 =
1√
2

√
(gf + 1)ω2

f + Ω2
0 +

√
(gf + 1)2ω4

f − 2gfω
2
0ω

2
f − 2Ω2

0ω
2
f + Ω4

0 (3.21b)

Ω3 = 0 (3.21c)

The third fixed-point Ω3 is neglected in the following process as it is basically invariant with
respect to the parameters of RFF. The optimal value of the tuning frequency ωf is defined as
the one which realizes equal performance at the fixed-point frequencies. This can be obtained by
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3.1. Resonant force feedback control system

substituting Eqs. (3.21)a and (3.21)b into Eq. (3.20) and equating the resulting expressions for a
ξf = 0, which yields:

ωoptf =
Ω0√
gf + 1

(3.22)

The performance index at fixed-points does not change for any value of the damping coefficient
through the whole frequency range. Therefore, the optimal value of the damping ratio ξf is obtained
by passing the performance index horizontally through the fixed-points. Two optimal damping
coefficients corresponding to two fixed-points can be obtained as:
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Figure 3.10: (a) Maximum amplitude of response against the feedback gain gf . (b) FRF of the
performance index for different values of the feedback gain gf when the other parameters follow
their optimal values.
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ξf1 =

√
H1gf

(
H2(gf + 1)−H1gf + 2

√
H1gf

(
−2H2(gf + 1) + (2(gf + 1))Ω2

0 +H1gf
))

2
√

2H2(gf + 1)Ω2
0 +H1H2gf − 4H1gfΩ2

0

(3.23a)

ξf2 =

√
H1gf

(
H2(gf + 1) +H1gf + 2

√
H1gf

(
2H2(gf + 1) + (2(gf + 1))Ω2

0 +H1gf
))

2
√

2H2(gf + 1)Ω2
0 +H1H2gf + 4H1gfΩ2

0

(3.23b)

H1 =Ω2
0 − ω2

0

H2 =Ω2
2 − Ω2

1

In practice, the optimal value of the damping is considered by taking the quadratic average of the
two obtained damping ratio Eqs. (3.23)a and (3.23)b:

ξoptf =

√
ξ2
f2 + ξ2

f1

2
(3.24)

The optimal value of the feedback gain gf still needs to be obtained. Fig. 3.10a illustrates the
maximum amplitude of the response against the feedback gain gf when the tuning frequency ωf
and the damping ratio ξf are set to their optimal values. It can be clearly seen that the maximum
amplitude of response starts to decrease by increasing gf . However, it stops decreasing after a
certain value of a feedback gain which can be introduced as its optimal value. Fig. 3.10b shows the
frequency-response-function (FRF) of the performance index for five different values of the feedback
gain gf : 0.1, 1, 28.0459, 30,∞ when the other two parameters (ωf and ξf ) follow their optimal
values. One sees that the optimal parameters of the damping ratio ξoptf and tuning frequency ωoptf

can realize equal peak for each value of the feedback gain gf . In addition, the performance index
indeed decreases with an increase in the feedback gain until the damping ratio reaches the critical
damping. By increasing the feedback gain more, the resonance of the system is shifted slightly
to a lower value with a negligible change in the amplitude of response. Therefore, the minimum
feedback gain gf , which realizes the minimal maximum amplitude of response, is defined as the
optimal feedback gain. This occurs when the damping coefficients reaches the critical value. By
equalizing Eq. (3.24) to one and solving the resulting equation, the optimal value of the feedback
gain is given by:

goptf =
Ω2

0 + 7ω2
0 +

√
64ω4

0 + 112ω2
0(Ω2

0 − ω2
0) + 97(Ω2

0 − ω2
0)2)

6(Ω2
0 − ω2

0)
(3.25)

Fig. 3.11a illustrates FRF of the performance index with and without control systems to compare
the vibration attenuation brought by IFF, α-controller and RFF when they are tuned based on H∞
optimization. It can be seen that the maximum amplitude of the response associated with RFF
or α-controller is more than four times lower than the one with IFF. This plot is also interesting
because it demonstrates that both α-controller and RFF realize equal peak with slightly different
frequencies. To better understand the difference between the performance of the control laws, Fig.
3.11b presents the maximum amplitude of the performance index as a function of the stiffness
ratio when parameters are tuned based on H∞ optimization. It is clearly visible that RFF and
α-controller always offer a better amplitude reduction especially when the coupling between the
actuator and the structure is low (i.e. k

ka
< 0.1). For example, RFF or α-controller is able to

reduce the amplitude of response 10 times lower than the one with IFF when the stiffness ratio is
about 2%. An additional observation from this plot is that the vibration attenuation brought by
RFF and α-controller is very close to each other especially for ka

k < 0.5. For high stiffness ratio,

the difference gets slightly larger such that when ka
k = 1, the maximum amplitude of response is

1.23 and 1.41 with the application of RFF and α-controller, respectively.
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It is worth pointing out that the application of RFF results in a dynamically softer system be-
cause of a higher static response with respect to that of control-off. This can be justified using the
mechanical analogy of RFF shown in Fig. 3.2e. At low frequency, RFF behaves like two stiffness
(i.e. ka and keq) which are placed in series with each other. In this case, the stiffness of the branch
is equal to ka

1+gf
which is lower than ka.

It is also interesting to see how sensitive the performance of the system is when RFF is detuned.
Fig. 3.12a shows the FRF for five different damping ratios as ξf/ξ

opt
f : 0, 0.25, 1, 4,∞, while the

other parameters are set to their optimal values. The fixed-points can be seen at two frequencies
where all the curves are interesting. For ξf < ξoptf , two resonances with higher peaks appear in

the vicinity of the primary one; whereas, only one resonance peak can be seen when ξf > ξoptf .
It is aligned with the RFF’s mechanical analogy shown in Fig. 3.2e. According to Eq. (3.14)
when ξf → 0, the equivalent damping approaches the zero value (≡ Ceq → 0) while the equivalent
inertance and the stiffness are non-zero value (≡ meq 6= 0 and keq 6= 0). This means that RFF
adds another undamped DOF to the system. However, Ceq →∞ when ξf →∞ as well. Therefore,
RFF is no longer effective and the system resonates at the resonance frequency of the primary
system (≡ Ω0). The performance degradation of RFF under the variation of the tuning frequency
ωf is demonstrated in Fig. 3.12b for five different values as: ωf/ω

opt
f : 0, 0.75, 1, 1.33,∞, when ξf

and gf are set to their optimal values. Moreover, to see how the performance is degraded when
the feedback gain is detuned, the FRF is plotted for five different values as: gf/g

opt
f : 0, 0.5, 2,∞

accompanied by fixing the other parameters to their optimal values. RFF gets detuned in the same
way by the variation of the tuning frequency or the feedback gain such that the one peak increases
accompanied by decreasing the other one. When ωf → 0, it is equivalent to infinite value of the
inertance and the damping (≡ meq, Ceq → ∞). Furthermore, when gf → 0, all the equivalent
parameters go to infinite value (≡ meq, Ceq, keq → ∞). In both cases, similar to ξf → ∞, RFF
is no longer effective and the system keeps resonating at the resonance frequency of the primary
system (≡ Ω0). On the other hand when ωf → ∞, RFF degrades to a non-zero value stiffness
(≡ keq 6= 0) causing a reduction in the resonance frequency since the equivalent stiffness is placed
in series to the stiffness of the actuator. The total stiffness of the branch (Fig. 3.2e) is now equal
to ka

1+gf
. In the case of gf →∞, the impedance of RFF becomes zero such that no force will pass
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Figure 3.11: When parameters of IFF, α-controller as well as RFF are tuned based on H∞ opti-
mization, (a) FRF of the performance index with and without control systems for ka = 0.1k, (b)
maximum amplitude of the performance index under the variation of the stiffness ratio ka
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Figure 3.12: FRF of the performance index for different values of (a) the damping ratio ξf , (b)
tuning frequency ωf and (c) feedback gain gf when the other parameters are set to their optimal
values.

through the branch (Fig. 3.2e) as if it is removed from the system. Hence, the resonance frequency
of the system is equal to the resonance frequency of the primary system when the force sensor is
taken away (≡ ω0). It is worth pointing out that the amplitude of response is more sensitive to the
tuning frequency than the others because the peaks get detuned rapidly by slightly deviating from
its optimum.

3.1.4 Control effort

It has been shown in the previous section that both RFF and α-controller provide almost the same
control authority to the system. The difference between them can be expressed in the terms of the
control effort. To do so, the actuator force with respect to the input disturbance force is taken as
the performance function. This performance function can be obtained using Eqs. (3.1) and (3.3)
as:

Fa
Fd

=
kaH(s)

(ms2 + k)(1 +H(s)) + 1
(3.26)
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By substituting Eq. (3.5) and Eq. (3.6) into the above equation,respectively, the performance
function for α-controller and RFF can be obtained as follow:

Fa
Fd

=
kaga(s+ α)

(ms2 + k)(s2 + ga(s+ α)) + s2
(3.27a)

Fa
Fd

=
kagfω

2
f

(ms2 + k)(s2 + 2ξfωfs+ ω2
f + gfω

2
f ) + s2 + 2ξfωfs+ ω2

f

(3.27b)

Figs. 3.13a and 3.13b show the FRF of the actuator force when parameters are optimized according
to the method of maximum damping and H∞ approach, respectively. It can be clearly seen that
α-controller requires a higher actuator force than that of RFF. In addition, the maximum actuator
force corresponding to α-controller is 2.67 and 2.54 greater than that of RFF when the parameters
are tuned according to the method maximum damping and H∞ approach, respectively. In other
words, the amount of current needs to be delivered to the actuator for α-controller is higher than
that of RFF and subsequently it consumes more power.
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Figure 3.13: FRF of the actuator force, (a) when the parameters are optimized according to the
method of maximum damping, (b) when the parameters are tuned based on H∞ optimization
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Figure 3.14: Normalized root mean square value of the actuator force Inor versus the variation of
the stiffness ratio ka

k (a) when the parameters are optimized according to the method of maximum
damping, (b) when the parameters are tuned based on H∞ optimization
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According to Figs. 3.13a and 3.13b, no matter which optimization criterion is used, two peaks
appear in the magnitude of the force around the resonance frequency of the system for both RFF
and α-controller. At the first peak, RFF requires less force than α-controller while it is the other
way around at the second peak. In addition, the magnitude of actuator force contains a non-zero
constant value at low frequency. It is worthwhile noting that this low frequency force interacts on
the stiffness of the structure leading to a dynamically softer system as it has been already observed
in the previous section from Figs. 3.8a and 3.11a where the static response has increased. For
both optimization criteria, α-controller requires a higher actuator force than that of RFF at low
frequency. Therefore, other than the power needs to be given to the actuator for reducing the
resonance peak, an amount of current needs to be provided for the actuator for the low frequency
force. Since α-controller requires more force at low frequency than RFF, low frequency force has
a big impact on the total power consumption of the control system. Even at high frequency, the
control force corresponding to α-controller is higher than that of RFF, although it can be neglected
because of more than three order of magnitude difference compared to the low frequency force. It
is clear that a criterion, which is able to consider the actuator force over the frequency-band of
interest (±∞), is required to compare RFF with α-controller. H2 norm measures the energy of the
actuator force through the whole frequency range. Consequently, H2 norm is proposed for further
comparison and it is assessed as follows [72]:

||Fa||2 =

√
1

2π

∫ ∞
−∞

Fd(ω)

∣∣∣∣ kaH(jω)

(−mω2 + k)(1 +H(jω)) + 1

∣∣∣∣2 dω (3.28)

where Fd(ω) is the power spectral density of the input disturbance force. For the case of white
noise excitation force, it is constant as a function of the frequency, i.e. fd(ω) = fd. Therefore, the
H2 norm can be simplified as:

||Fa||2 =

√
Fd
2π

∫ ∞
−∞

∣∣∣∣ kaH(jω)

(−mω2 + k)(1 +H(jω)) + 1

∣∣∣∣2 dω (3.29)

In other words, the above equation represents the root-mean-square (RMS) value of the actuator
force. Then, its normalized Inor is defined to highlight the ratio of the RMS of the actuator force
to the excitation force with a uniform spectral density like:

Inor =

√
π

Fd
||Fa||2 =

√∫ ∞
0

∣∣∣∣ kaH(jω)

(−mω2 + k)(1 +H(jω)) + 1

∣∣∣∣2 dω (3.30)

Figs. 3.14a and 3.14b present Inor under the variation of the stiffness ratio when parameters are
optimized according to the method of maximum damping and H∞ approach, respectively. Two
observations can be made on this plot. One sees that α-controller always requires a higher actuator
force than RFF especially when the stiffness ratio increases. In addition, the actuator force of RFF
when its parameters are tuned based on H∞ optimization is greater than that of RFF when its
parameters are optimized based on the method of maximum damping. However, this is not the
case for α-controller. For a vary low stiffness ratio ka

k << 0.1, it slightly requires less actuator force
when its parameters are optimized based on the method of maximum damping. It is the opposite
for high value of the stiffness ratio ka

k >> 0.1.

3.1.5 Stability and Robustness analysis

Stability analysis

It is always important to estimate the gain margin and the phase margin of a control system
even if it is unconditionally stable like RFF. Enough margins could avoid an instability of the
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Figure 3.15: The bode diagram of the loop-gain (G ×H) when the parameters of RFF are tuned
according to (a) the method of the maximum damping as well as (b) H∞ optimization and when
the parameters of α-controller are tuned according to (c) the method of the maximum damping as
well as (d) H∞ optimization. (e) Minimum phase margin with respect to the stiffness ratio when
the parameters are set to their optimal values.
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system in practical implementation. The bode diagrams of the loop-gain (i.e. G×H) are shown in
Figs. 3.15a and 3.15b when RFF is tuned according to the method of maximum damping and H∞
optimization, respectively. The minimum stability margin is also highlighted in the figures. Clearly,
the gain margin is infinity and the phase margin is 30.1◦ and 18.7◦ according to the method of
maximum damping and H∞ optimization, respectively. Furthermore, the loop-gain of the system
when α-controller is implemented is shown in Figs. 3.15c and 3.15d when the parameters are
optimized based on the maximum damping and the H∞ methods, respectively. Like RFF, the
gain margin is infinity. However, the minimum phase margin is 29.2◦ and 19.2◦ considering the
method of maximum damping and H∞ criterion, respectively. Those bode diagrams are obtained
for a certain value of the stiffness ratio i.e. ka

k = 0.1. The evolution of the minimum phase margin

when the stiffness ratio ka
k is varied and the parameters of RFF and α-controller follow their optimal

values is demonstrated in Fig. 3.15e. According to it, three important observations are made. First,
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Figure 3.16: Under the variation of the stiffness k of the primary system while the parameters of
the controller are kept constant at their optimal values for the specified stiffness ratios i.e. ka/k0 :
0.01, 0.1, 1, (a) closed-loop damping coefficient µ of the performance index and (b) normalized
maximum amplitude Y of the performance index with respect to the static response.
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3.2. Positive position feedback control system

the method of maximum damping always offers a better phase margin than that of H∞ approach.
Furthermore, the minimum phase margin decreases by reducing the stiffness ratio. Noted that the
classical IFF maintains an infinite gain margin and 90◦ phase margin for any value of the feedback
gain. It can be concluded that the better control performance obtained by RFF or α-controller
than IFF, as explained in Section 3.1.1, comes at the expense of a degradation in the phase margin.
Moreover, Fig. 3.15e is connected to Figs. 3.8b and 3.11b. In Fig. 3.8b, it has been shown that
α-controller gives a slightly better control performance in terms of the closed-loop damping ratio
than RFF for high value of the stiffness ratio. This out-performance is reflected directly in the
minimum phase margin shown in Fig. 3.15e. It is the other way around when the parameters
are tuned according to H∞ optimization. According to Figs. 3.11b and 3.15e, the better control
performance provided by RFF in terms of the amplitude reduction comes at the price of a lower
phase margin compared to that of α-controller.

Robustness analysis

What follows is a robustness study of IFF, α-controller, and RFF under the stiffness uncertainty.
To check the robustness of the systems based on the method of maximum damping, the minimum
damping ratio of the closed-loop system, named µ, is shown in Fig. 3.16a under the variation of
the stiffness of the primary system k normalized with respect to the initial value k = k0 = 1. In
addition, the normalized maximum amplitude of the response with respect to its static response
(i.e. Y = (k + ka)| xFd

|max) is considered for the robustness analysis of the systems designed based

on H∞ optimization. Fig. 3.16b shows Y against k
k0

. In both figures, the robustness is evaluated
for three different stiffness ratio ka/k0 : 0.01, 0.1, 1 while the corresponding optimal parameters of
RFF, α-controller, and IFF are tuned for k = k0 and kept constant. For k < k0, it is interesting
that the closed-loop damping µ realized by IFF started to increase and subsequently the maximum
amplitude of response at the frequency of resonance decreases with respect to the static response.
This is because the distance between pole and zero in the open-loop transfer function increases
which subsequently leads to a higher control performance even if the feedback gain is constant.
In addition, the robustness of RFF and α-controller are generally degraded for any changes in the
stiffness of the primary system since the resonance of the control systems has been perfectly tuned
for the initial stiffness k0. It has been already shown in Figs. 3.5b and 3.12b that any changes in the
tuning frequency of RFF ωf can significantly affect the control performance. On the other hand,
the robustness of RFF and α-controller depend on the stiffness ratio ka

k0
such that the degradation

rate of the control performance decreases with increasing in the stiffness ratio ka
k0

. It should be

noted that despite the loss of efficiency under the variation of the stiffness (i.e. k
k0

= [0.6, 1.5]), the
performance of RFF is still superior to that of IFF, which is an appealing feature of RFF. It can be
also observed that RFF can tolerate a higher level of uncertainty than α-controller when k < k0.

3.2 Positive position feedback control system

Positive position feedback is an attractive control law for the control of plants having no high
frequency roll-off. The tuning of the parameters of the positive position feedback to obtain the
desired closed-loop performance is quite challenging. We present a technique to design the positive
position feedback controller with the optimal damping. The technique is demonstrated on a single
degree-of-freedom system. The poles of the positive position feedback are tuned using the method
of maximum damping, which states that the maximum damping is achieved when both closed-loop
poles of the system are merged. The parameters of the positive position feedback are dependent on
the desired target damping in the closed-loop system. However, arbitrary choice of target damping
results in high response at the frequencies lower than the tuning frequency. The optimal value of
the target damping is obtained by minimizing the H2 norm of the closed-loop transfer function
of the system. The influence of the various parameters of the positive position feedback on the
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closedloop response of the system is also studied. Finally, the experiments are conducted to verify
the effectiveness of the proposed technique.

3.2.1 Mathematical modeling and H2 optimization

An undamped single degree-of-freedom (DOF) system with a massm, and a stiffness k, is considered
as the primary structure (Figure 3.17). It is excited by an external force fd. The active control
system consists of an absolute displacement sensor x, mounted on the mass, the PPF controller
and an actuator fa. The governing equations of the motion are written as:

mẍ+ kx = fd + fa (3.31a)

fa = gfu (3.31b)

and the dynamics of the controller read:

ü+ 2ξfωf u̇+ ω2
fu = ω2

fx (3.32)

where u, ξf , ωf and gf are the control signal, the damping ratio, the frequency and gain of the
controller, respectively. The above equations are normalized with respect to the dimensionless time

τ = ω0t where ω0 =
√

k
m as:

x′′1 + x1 = f + βx2 (3.33)

x′′2 + 2ξαx′2 + α2x2 = α2x1 (3.34)

where the normalized parameters are considered as follow:

x1(τ) = x(t), x2(τ) = u(t),Ω = ω/ω0,

f =
1

k
fd, β =

1

k
gf , α =

ωf
ω0
, ξ = ξf (3.35)

By transforming Eqs. (3.33) and (3.34) to the Laplace domain, the transfer function of the closed-
loop system from the normalized input f and normalized displacement of the mass x1 can be
derived as:

x1

f
=

s2 + 2ξαs+ α2

(s2 + 1)(s2 + 2ξαs+ α2)− α2β
(3.36)

m

k

fd

fa PPF

x

Figure 3.17: Schematic of the system under consideration consisting of single degree-of-freedom
oscillator combined with the active control part
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Figure 3.18: Root-locus curves for two different PPF controllers (P0 is the pole of the primary
system, •: closed-loop poles when the pole of the PPF is placed at P1, �: closed-loop poles when
the pole of the PPF is placed at P2).

where s = jΩ is the Laplace variable.
According to Eq. (3.36), the transfer function of the closed-loop system has two independent poles.
The method of maximum damping is used to tune the pole of the PPF properly. It states that
the best pole of the PPF is at the location where both resulting closed-loop poles have an equal
damping ratio. This can be easily seen in Figure 3.18 for two different locations of the controller
poles. The pole of the PPF is placed at P1 at first attempt. The value of the closed-loop damping
is about 30% as shown by the dotted arrow line. The right and the left loops are intersecting at one
point when the pole of the PPF is modified to P2. The corresponding damping ratio in this case
increases to more than 45%. More details on this will be given in the Section 3. By considering
ωc and η as the frequency and damping ratio corresponding to the poles of the closed-loop system,
the frequency response function of the closed-loop system can be simplified as:

x1

f
=

s2 + 2ξαs+ α2

(s2 + 2ηγs+ γ2)2
(3.37)

where γ = ωc/ω0. The following equations are obtained by equating the polynomial coefficients of
the denominator of the fraction on the right hand side of Eqs. (3.37) and (3.36).

4ηγ = 2αξ (3.38a)

(4η2 + 2)γ2 = (α2 + 1) (3.38b)

4ηγ3 = 2αξ (3.38c)

γ4 = α2 − α2β (3.38d)

Interestingly, from Eq. (3.38a) and Eq. (3.38c), it can be concluded that γ has to be equal to one
in order to have unique and non-trivial solutions. This implies that the resonance frequency of the
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closed-loop system should be the same as the resonance frequency of the primary system.

ωc = ω0 (3.39)

The set of Eq. (3.38) is now simplified to three sub equations. However, there are still four unknown
variables namely α, β, ξ and η. This results in an under-determined system of equations. This
is because the number of PPF controllers which can provide the merged poles in the closed-loop
response is not unique. In order to transfer the system of equations from under-determined to a
determined system, one of the variable is set free. It is meaningful to consider the damping of the
closed-loop response η as the free variable. In such a case, the controller parameters α, β and ξ
are obtained for a particular value of η in such a way that the poles of the closed-loop response
are merged. As a consequence, Table 3.3 lists the controller parameters as a function of the target
damping, η.

Table 3.3: Parameters of the controller as a function of target closed-loop damping derived using
maximum damping criterion

Parameters Values

α
√

4η2 + 1

β 4η2

4η2+1

ξ 2η√
4η2+1

Therefore, the closed-loop transfer function, x1
f , can be rewritten as:

x1

f
=
s2 + 4ηs+ 4η2 + 1

(s2 + 2ηs+ 1)2
(3.40)

At low frequency, the magnitude of x1
f can be approximated to 4η2 + 1. This means that the active

damping comes at the price of the magnification of the response at low frequency, i.e. a degra-
dation of the static stiffness. This implies that PPF controller softens the structure for a higher
value of target damping. In the view of the vibration control design, this can be a major problem.
The optimal value of the damping, which minimizes the energy of the system when subjected to
Gaussian white noise input, is obtained using H2 optimization.

The square of the H2 norm of the closed-loop transfer function can be expressed as [72]:

||H||22 =

∫ ∞
−∞

S0(ω) |y|2 ω0dΩ (3.41)

where S0(ω) is the power spectral density of the input signal and y is the transfer function between
the perturbation and the output of the system at a given location and in a given direction. In the
present study, y corresponds to x1/f . In the case of white noise excitation, S0(ω) is constant as a
function of frequency (S0(ω) = S0). Therefore, the square of H2 norm is simplified as:

||H||22 = S0ω0

∫ ∞
−∞
|y|2 dΩ (3.42)

The minimization of the variance of the response quantity is therefore equivalent to minimizing
the H2 norm of the transfer function:

PI =

∫ ∞
−∞
|y|2 dΩ (3.43)
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Figure 3.19: a) H2 norm of the controlled system for increasing the damping ratio of the closed-loop
function η. b) Frequency response function of the the closed-loop system for different value of the
target damping η

According to [72], the analytical solution to the integral (Eq. (3.43)) is in the form of:

PI = π
N1 +N2 +N3 +N4

D1

N1 = (
B2

0

C0
)(C2C3 − C1C4)

N2 = C3(B2
1 − 2B0B2)

N3 = C1(B2
2 − 2B1B3)

N4 = (
B2

3

C4
)(C1C2 − C0C3)

D1 = C1(C2C3 − C1C4)− C0C
2
3

(3.44)

when y(Ω) is in general form as:

y(Ω) =
−B3Ω3 −B2Ω2 +B1Ω +B0

C4Ω4 − C3Ω3 − C2Ω2 + C1Ω + C0

(3.45)

By equating Eq. (3.40) and the above equation to obtain Bi and Ci coefficients and using the
analytical expression (Eq. (3.44)), the performance index can be defined as:

PI = π
16η4 + 12η2 + 5

4η
(3.46)

Clearly, the optimal value of the damping at which the H2 norm is minimized can be calculated by
differentiating Eq. (3.46) with respect to the damping η, and equating the derivative to zero:

d(PI)

dη
= π

48η4 + 12η2 − 5

4η2
= 0 (3.47)

which yields:

ηopt = 0.4702 (3.48)

Interestingly, the optimal value of the target damping is constant for all primary systems. Figure
3.19a shows the H2 norm (Eq. (3.42)) as a function of the closed-loop damping ratio η. Amplitude
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reduction around the resonance frequency is responsible for the decreasing H2 norm from 0 to
47.02% of the target damping ratio. However for higher damping ratio η, the increased magnitude
at low frequency becomes more dominant than the amplitude reduction around the resonance. This
can be seen in the frequency response shown in Figure 3.19b for five different values of the target
damping defined as η/ηopt : 1, 1/4, 1/2, 2, 4.

3.2.2 Influence of the PPF parameters

In the following section, P0 and P1 are defined to be the pole of the primary system and the pole
of the optimal PPF, respectively. The closed-loop pole when the optimal PPF is implemented is
also shown by �.

The damping ratio of the PPF (ξ)

Figure 3.20a shows the root-locus for various values of the damping ratio of the PPF (ξ). Here,
the other parameters of the controller α and β are set to the optimal values. In this section, P2

and P3 are specified to be the poles of the PPF when ξ = 0.5ξopt and ξ = 2ξopt, respectively. In
addition, • and N indicate the closed-loop poles when ξ = 0.5ξopt and ξ = 2ξopt, respectively. The
locus consists of two loops, starting respectively from the pole of the primary system and the pole
of the PPF. One of the loops goes to real axis and the other one goes to infinity. If ξ < ξopt, both
closed-loop poles have less damping ratio than for the optimal case. In this case, one pole has
higher and the other one has lower frequency than the resonance frequency of the primary system.
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Figure 3.20: a) Root-locus for three different values of the damping ratio ξ (P0: pole of the primary
system; P1: pole of the PPF and �: closed-loop poles when ξ = ξopt; P2: pole of the PPF and •:
closed-loop poles when ξ = 0.5ξopt; P3: pole of the PPF and N: closed-loop poles when ξ = 2ξopt).
b) Frequency response of the controlled system for different values of the damping ratio ξ
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3.2. Positive position feedback control system

If ξ > ξopt, one pole is more damped than the other one. The heavily damped pole is placed
close to the pole of the controller. Therefore, the pole/zero cancellation occurs because the zero of
the closed-loop function (Eq. (3.36)) is the pole of the controller. As a consequence, the perfor-
mance of the controller is degraded and especially it is no longer effective if ξ → ∞. It is worth
pointing out that the value of the H2 norm for ξ = 0.5ξopt and ξ = 2ξopt is about 29% and 21%
greater than the optimum one, respectively.
It is meaningful to examine the performance of the PPF on the frequency response for different
values of the damping ratio ξ. Figure 3.20b shows the frequency response for five different damping
ratios defined as ξ/ξopt : 1, 0.1, 0, 10 and ∞. One sees that all the curves are intersecting at two
frequencies which are called fixed points. For the damping ratios lower than the optimal value, the
primary resonance is transformed into one anti-resonance and two new resonances appear in the
vicinity of the old one. An interesting point here is that the increased magnitude of the response
at low frequencies disappears when the value of the damping increases (ξ > ξopt). Explicitly, the
coupled system behaves like the primary system with no additional damping when ξ →∞.

The frequency of the PPF (α)

The root-locus plots for three different values of the frequency of PPF are compared in Figure 3.21a.
In this case, the other control parameters (ξ and α) are set to the optimal values. In this case, P2
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Figure 3.21: a) Root-locus for three different values of the frequency of the PPF α (P0: pole of the
primary system; P1: pole of the PPF and �: closed-loop poles when α = αopt; P2: pole of the PPF
and •: closed-loop poles when α = 0.5αopt; P3: pole of the PPF and N: closed-loop poles when
α = 2αopt). b) Frequency response of the controlled system for different values of the frequency of
the PPF α.
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and P3 are ascertained to be the poles of the PPF when α = 0.5αopt and α = 2αopt, respectively.
Furthermore, • and N demonstrate the closed-loop poles when α = 0.5αopt and α = 2αopt, respec-
tively. If α 6= αopt, one of the closed-loop poles is more damped than the other one. The heavily
damped pole is less effective than the other pole because of the pole/zero cancellation as discussed
in section 3.2.2. It can be seen in Eq. (3.36) that if α → 0, the PPF could no longer add any
damping to the system. Also, if α → ∞, the pole of the PPF becomes ineffective in the terms of
adding damping to the system. However, the other pole moves on the branch which goes toward the
origin. This modifies the frequency of the pole to a slightly lower value. It should be noted that the
H2 norm for α = 0.5αopt and α = 2αopt is 46% and 80% greater than the optimum one, respectively.

Figure 3.21b depicts the frequency response for five different values of α. The evidence of the
performance degradation can be seen when α → 0. In this case, the controlled response has the
same dynamic behavior as the primary system with no damping. Two important observations are
made when the frequency of the controller is larger than its optimal value. First, no more degrada-
tion of the static stiffness can be observed in the low frequency response of the system. Second, it
results in a dynamically softer system. It is because the controller behaves like a positive constant
gain in this case. This constant value amplifies the feedback signal which is positively proportional
to the displacement. Consequently, it reduces the stiffness and the resonance frequency of the
structure.

The feedback gain (β)

It is worth pointing out that the system remains stable even if the changes in the damping ξ or the
frequency α of the controller are significant. However, it is not the case for the feedback gain β. In
order to check the stability, the Routh-Hurwitz stability criterion is used. For this purpose, consider
A0, A1, A2, A3 and A4 as the corresponding coefficients of Laplace variable in the denominator of
Eq. (3.36) from s0 to s4, respectively. This criterion states that the poles of the Eq. (3.36) have
negative real parts if and only if the following conditions are satisfied:

A0, A1, A2, A3, A4 > 0 (3.49a)

A2A3 −A1A4 > 0 (3.49b)

A1A2A3 −A2
1A4 −A0A

2
3 > 0 (3.49c)

It can be derived that the system is stable if and only if the feedback gain β is considered as:

0 < β < 1 (3.50)

The designed optimal value of the feedback gain βopt is equal to 0.4693 which ensures the stability
of the system. The corresponding root-locus for three different values of the feedback gain are
shown in Figure 3.22a. The damping ratio ξ and the frequency α are set to the optimal values.
In this section, P2 and P3 are the poles of the PPF when β = 0.5βopt and β = 2βopt, respectively.
Moreover, • and N show the closed-loop poles when β = 0.5βopt and β = 2βopt, respectively. If
β < βopt, the heavily pole located closed to the pole of the controller becomes less effective because
of the pole/zero cancellation explained in section 3.2.2. Especially, Eq. (3.36) evidences that, if
β → 0, the controller is no longer effective to increase the damping of the system. If β > βopt,
the heavily damped pole can improve the damping of the closed-loop response. However, this pole
moves directly toward the origin which makes the system softer. The value of the H2 norm for
β = 0.5β and β = 2β increases 45% and 292% with respect to the optimum case, respectively.
Another interesting result is shown in the frequency response of the controlled system (Figure
3.22b) for five different values of the feedback gain. The control effectiveness degrades in terms
of the resonance peak by decreasing the feedback gain. The more vibration attenuation of the
resonance peak comes at the expense of the increased static stiffness when β ≈ 1. This has been
already discussed as a major problem in the previous section.
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3.2. Positive position feedback control system

3.2.3 Experimental validation

As shown in Figure 3.23, the experimental setup used to test the optimal proposed controller is
a cantilever beam with the dimensions 455mm, 40mm and 3mm as length, width and thickness,
respectively. The resonance of interest is the first bending mode of the beam. According to the
first mode shape, the maximum displacement occurs at the free-end of the beam. Thus, a voice-
coil actuator is placed there and an eddy-current sensor is fixed next to the actuator in order to
measure the displacement motion. A dSPACE MicroLabBox is used for the purpose of both the
data acquisition as well as control system. The whole control scheme is designed first inside the
graphical SIMULINK environment of MATLAB and then compiled. The compiled file is down-
loaded onto the ControlDesk environment of dSPACE software, which is connected directly to the
MicroLabBox hardware, to be executed in real time. The control scheme is updated at a sampling
frequency of 10 kHz while the measured data is also recorded at the same sampling frequency. A
current amplifier (ADD-45N) is used to drive the voice coil actuator.
Although the obtained formulas are strictly valid for an undamped primary system, they can fairly
be used to specify the parameters of controllers for lightly damped structures as well. The beam
shown in Figure 3.23 behaves like a lightly damped structure when the voice coil actuator is not
mounted. The damping ratio in this case is 0.8%. However, it becomes 8% when the actuator is
mounted. This is because of the dissipation of the energy caused by the eddy current inside of the
electromagnetic transducer. A negative damping force is implemented actively to compensate the
undesired damping of the actuator. Displacement feedback with a positive derivative operator is
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Figure 3.22: a) Root-locus for three different values of the feedback gain β (P0: pole of the primary
system; P1: pole of the PPF; �: closed-loop poles when β = βopt; •: closed-loop poles when
β = 0.5βopt; N: closed-loop poles when β = 2βopt). b) Frequency response of the controlled system
for different values of the feedback gain β.
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PPF

dt
dx

Gain C:I:+

white
noise

MicroLabBox

x fd + fa

DACADC

Figure 3.23: Picture of the test benchmark used to test the proposed controller. Cantilever beam,
clamped at one end, and equipped with an voice coil actuator and eddy-current sensor at the
other end. (ADC: Analog-to-Digital-Converter; DAC: Digital-to-Analog-Converter; C.I.: Current-
Injector)
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Figure 3.24: Block diagram of the controller architecture (G: primary system; c: damping of the
primary system)
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used to add the negative damping in the system. The configuration scheme for the experimental
study is shown in Figure 3.23. A white noise generator is employed to excite the structure from
0Hz to 100Hz by using the same actuator in the setup. It also applies the control force. Further-
more, simulations are carried out to examine the performance of the designed optimal controller
numerically. The block diagram of the control architecture is shown in Figure 3.24.

100 101

Frequency (Hz)

10-4

10-3

10-2

10-1

100

Experiment - No control

Experiment - Optimal PPF

Simulation - No control

Simulation - Optimal PPF

Figure 3.25: Frequency response functions from the disturbance force to the displacement of the
eddy current sensor obtained from the simulations and experiments with and without optimal PPF
controller

Figure 3.25 shows the frequency response functions from the disturbance force (the white noise)
to the displacement of the eddy-current sensor. It also compares the simulations and the exper-
iments without control and with the optimal PPF. The value of the stiffness and the resonance
obtained by matching one degree of freedom system to the experimental result are 295N/m and
8.65Hz, respectively. The effective structural damping after addition of negative damping is found
to be 0.45%. An interesting observation is that the experimental result shows a good agreement
with the simulations. The maximum amplitude of the coupled response is reduced almost 33 times
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Figure 3.26: Bode diagram of the loop-gain for the designed optimal PPF controller (◦: gain
margin; •: phase margin)
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Figure 3.27: Sensitivity curve for the designed optimal PPF controller (�: Crossover)

compared to the primary system. Also, amplification of the response at low frequencies is only
about 88% which is not detrimental. As an important consequence, the result confirms that the
obtained formula is also valid for lightly damped structure.
To better understand the stability of the closed-loop system in terms of the phase and the gain
margins, the loop-gain of the system is also shown in Figure 3.26. It is obtained by multiplying the
primary system to the designed optimal controller (Eq. (3.51a)). According to the figure 3.26, the
phase is always bounded between 180deg and -180deg in the entire frequency range, which ensures
the stability of the closed-loop system. The gain margin is 6.57dB obtained when the phase touches
the 180deg at 0Hz. Furthermore, the minimum phase margin is -46.7deg where the magnitude of
response touches the 0dB line.

Loop−Gain : −G× PPF (3.51a)

Sensitivity :
1

1−G× PPF
(3.51b)

The sensitivity function (Eq. (3.51b) is also depicted in Figure 3.27. As it is expected, the
controller amplifies the disturbance of the system below the crossover frequency i.e. when the
magnitude of response intersects the 0dB line. This leads to increasing the static stiffness of the
system. After the crossover frequency, the controller reduces the disturbance especially around the
resonance frequency where the maximum reduction occurs. At high frequency, the controller is no
longer effective.

3.3 Nonlinear Positive Position Feedback (NPPF)

Appendix B investigates the potential of using a nonlinear positive position feedback controller
(NPPF) for vibration mitigation of a Duffing oscillator. The proposed controller is designed based
on the principle of similarity which states that anti-vibration devices should be governed by the
same equations as those of the host structure. Closed-form expressions for the H∞ optimal control
parameters that minimize the maximal response of the structure are firstly derived for the linear
positive position feedback (LPPF) controller and then extended to the nonlinear counterpart. The
harmonic balance method is employed to approximate the analytical solutions. Numerical simu-
lations are presented to show the performance of LPPF and NPFF. In this section, experimental
tests are performed to validate the proposed control strategy.
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m

k

fd

fa

x

k3 H(s)

Figure 3.28: The scheme of the system under consideration

3.3.1 A review of modeling and H∞ optimization

The system under investigation is shown in Figure 3.28. The structure is modeled as an undamped
single degree of freedom system, defined through a lumped mass m, a linear spring k, and a cubic
spring k3 . It is excited by a harmonic force fd = Fdcos(ωt). A force actuator is placed in parallel
to the passive mount. The control loop is implemented by feeding the displacement of the lumped
mass m through the nonlinear controller H(x) to drive the actuator. The governing equations of
the system read:

mẍ+ kx+ k3x
3 = Fdcos(ωt) + fa (3.52)

fa = gfH(x) (3.53)

where fa is the actuating force proportional to the driving signal, gf represents the feedback gain
and H(x) is the nonlinear controller. The NPPF controller is designed based on the principle of
similarity, and consequently a cubic term is included in the linear PPF controller, yielding:

ü+ 2ξfωf u̇+ ω2
fu+ κu3 = x (3.54)

where u = h(x), ξf , ωf and κ are controller parameters. In order to come to a more general
formulation, the following parameters are introduced to normalize the system’s governing equations:

τ = ω0t, ω0 =

√
k

m
,α =

ωf
ω0
, β =

gf
kω2

0

, y1 =
kx

Fd
, y2 =

kω2
1u

Fd
, δ =

k3F
2
d

k3
, µ =

κk

k3ω6
0

(3.55)

The equations of motion with normalized parameters can then be written as:

y′′1 + y1 + δy3
1 − gy2 = cos(Ωτ) (3.56)

y′′2 + 2αµy′2 + µ2y2 + δβy3
2 = y1 (3.57)

where Ω is the normalized frequency defined as Ω = ω
ω0

. It is shown that the forcing amplitude
appears only in the expression of the nonlinear coefficients. The H∞ optimization criterion is
employed to optimize the controller H(x) aiming to minimize the maximum magnitude of the
frequency response of the system under consideration. In this context, the magnitude of the nor-
malized driving point receptance |y1| is taken as the performance index. The optimal parameters
of the controller are listed in Table 3.4. They are obtained as a function of the normalized feedback
gain β. Appendix B presents more detail for the derivation of optimal parameters.
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Table 3.4: Optimal parameters of NPPF

Parameters Values

ξopt

√
3β

4(2−β)

αopt 1
µopt 2β − 9

16β
2 +O(β3)

Figure 3.29: The configuration scheme for the experimental study.

3.3.2 Experimental validation

The same experimental setup as the one used in Section 3.2.3 is used here to validate the LPPF
and NPPF controllers. However, the cantilever beam is dynamically a linear system. As for the
nonlinear cubic spring of the Duffing oscillator, it was realized in an artificial way by feeding
back the tip displacement of the cantilever beam through a cubic function to drive the voice coil
actuator. The nonlinear cubic stiffness k3 was therefore artificially set to 2 × 108 N/m3. With
this configuration, it is also possible to simulate nonlinear forces for other applications by applying
the corresponding force profiles to the actuator. The configuration scheme for the experimental
study is depicted in Figure 3.29. As seen, the input signal applied to the voice coil actuator
comprises four contributions: (i) the disturbance force, (ii) the cubic spring force, (iii) the negative
damping force which was set to gneg = 0.6, and (iv) the control force. It is noted that the control
force delivered by the NPPF controller is calculated in a way similar to that for implementing the
‘artificial‘ Duffing oscillator, where the output of the LPPF compensator is fed through a cubic
function and then negatively superposed with the displacement signal (sensor output) in order to
form the corresponding nonlinear input signal for the LPPF compensator.

Experimental results in a linear regime of motion

The first set of experiments was conducted to test the validity of the optimal control parameters for
the LPPF controller. The cubic branches in Fig. 7 for the primary Duffing oscillator and the NPPF
controller were deactivated such that the system dynamically behaves in a linear fashion. During
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the tests, a white noise signal was applied to excite the beam in the vicinity of its first bending
motion at 8.6 Hz. The duration of the measurement was set to 200 s. Figure 3.30a plots the transfer
function between the disturbance force and the measured tip displacement, where the parameter ξ
is varied from 1/100 to 100 times the theoretical optimum value. In this case, the other parameters
of controller such as αopt = 1, and β = 0.05 are kept constant. Figure 3.30b investigates the effect of
the feedback gain β on the frequency response of the driving point receptance, where the parameters
ξ and α were set to their optimal values as given in Table 3.4. As seen, the obtained experimental
results are in accordance with the theoretical analysis shown in Appendix B. The parameters of
the LPPF controller can be tuned to minimize the maximum response of one structural mode in a
fashion analogous to that of TMDs. The effectiveness of the LPPF controller at the optimal tuning
is also verified to be dependent upon the feedback gain. However, as it was already emphasized
in Appendix B, the price to pay for this superior performance is the amplification of the response
at low frequency. This is because the LPPF controller turns to a proportional controller at low
frequency where its control effectiveness is to reduce the effective stiffness of the system thus leading
to the low frequency amplification side effect. Figure 3.30a and Figure 3.30b are to be compared
with Figure B.1 and Figure B.2, respectively.

Experimental results in nonlinear regime of motion

The potential of the LPPF and NPPF controllers for damping the Duffing oscillator is experimen-
tally explored in this section. A sine sweep signal is applied as the disturbance to excite the beam.
The sine sweep is bounded between 4Hz and 15Hz with a sweeping rate of 0.02Hz/s.
The control effectiveness of the LPPF controller for vibration mitigation of the Duffing oscilla-
tor is examined first. Figure 3.31a plots the time history of the tip displacement normalized to
the level of the excitation force which is varied from 4 to 16.5 mN, while Figure 3.31b depicts
the envelope of the normalized response which thus can be equivalently considered as the driving
point receptance, hereafter also referred to as the experimental performance index. Note that the
corresponding normalized nonlinear coefficient δ for different levels of the excitation force can be
calculated according to Eq. (3.55). As can be seen, the observed experimental results agree well
with the theoretical analysis shown in Appendix B, that is, the LPPF controller is only effective for
weakly nonlinear systems. In addition, a jump phenomenon associated with positive cubic springs is
experimentally observed which indicates the existence of the fold bifurcations of the system motion.

Next, the validity of the nonlinear control gain µ is experimentally examined by repeating the
same tests as conducted for Figure B.3, where the coefficient of the cubic term of the NPPF con-
troller κ is varied over a range from 1/4 to 4 times the theoretical optimum value. The optimal
value of κ is equal to κopt = 1.8283 × 1015 and its dimensionless counterpart is µ = µopt = 0.099.
The corresponding experimental results are shown in Figure 3.32, which again agree well with the
theoretical analysis i.e. the resonance peaks of equal amplitude are obtained with the derived op-
timal setting of κ.

The control performance of the LPPF and NPPF controllers is experimentally compared for the
same feedback gain gf = 39000 (normalised gain β = 0.05) and the excitation level Fd = 16.5mN
(δ = 0.003), which is shown Figure 3.33. It can be seen that the detuned control performance with
the LPPF controller in terms of the H∞ norm is retrieved by the NPPF controller as predicted in
Figure B.3b.

The investigation of the NPPF controller is continued with different levels of the excitation force
ranging from 8 to 27 mN. The experimental results are presented in Figure 3.34a and 3.34b. It can
be seen that the control performance with the NPPF controller is maintained for a larger range
of excitation force amplitudes compared to the LPPF controller (the corresponding dimensionless
nonlinear coefficient is still equal to µopt = 0.099). However, when the disturbance was increased
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Figure 3.30: a) The frequency response of deriving point receptance for different values of the
damping ratio ξ when the LPPF controller is applied. b) The frequency response of deriving point
receptance for different values of the feedback gain β when the LPPF controller is applied.
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to 27 mN, the response of the system is modulated around 10 Hz, which indicates that system
might fall into the regime of quasiperiodic motions. In order to confirm this, a sinusoidal excitation
was used instead, where the frequency varied from 9.7 Hz to 10.2 Hz and the amplitude was set
to 27 mN. The evolution of the time series of the normalised system response with respect to the
excitation frequency is shown in Figure 3.34c. It can be seen that the system response below 10.1
Hz exhibits more than one frequency component under a sinusoidal excitation, which is a clear
sign of the quasiperiodic oscillations. At 10.2 Hz, the maximum amplitude of the system response
suddenly decreases and the quasiperiodic motion disappears. Back to the experimental perfor-
mance index curve associated with this excitation amplitude as shown in Figure 3.34b, the results
observed can be understood as follows: the system response follows the main frequency response
curve until the first Neimark-Sacker bifurcation point located at around 9.7 Hz, then it continues
to undergo some quasiperiodic motions between 9.7 Hz and 10.1 Hz and finally the response jumps
down to the main frequency response curve instead of continuing to approach the second Neimark-
Sacker bifurcation point along the same branch. This trend corresponds well with the numerical
investigation as shown in Figure B.4b for the case.

3.4 PPF vs Digital Shunt

In Section 2.4, it has been shown that an operational amplifier (OpAmp) is required for the im-
plementation of the active control system. Since the OpAmp consumes the external energy for
its operation, the power dissipation of the OpAmp has been derived accordingly (Eq. (2.33)). In
addition, this power dissipation has been computed for the digital electromagnetic shunt.

In this section, the power dissipation of the OpAmp is obtained when the positive position feed-
back (PPF) as an active control system is implemented following the same procedure explained in
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Figure 3.31: Measurement of the tip displacement normalised to the excitation level when the
LPPF controller is applied: (a) time history signals and (b) its envelope
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Section 2.4. In doing so, the force and velocity of the system can be written in frequency domain
according to the set of Eq. 3.31 as follow:

fa(jω) = −
gfω

2
f

−ω2 + 2ξfωf jω + ω2
f

G(jω)fd(jω) (3.58)
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Figure 3.34: Measurement of the tip displacement normalised to the excitation level when the
optimal NPPF controller is applied: (a) time history signals, (b) its envelope and (c) time series
with sinusoidal excitations
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and

v(jω) = (jω)G(jω)fd(jω) (3.59)

where G(jω) is:

G(jω) =
x(jω)

fd(jω)
=

−ω2 + 2ξfωf jω + ω2
f

(−mω2 + cjω + k)(−ω2 + 2ξfωf jω + ω2
f )− gfω2

f

(3.60)

By substituting Eqs. (3.58)-(3.61) into Eq. 2.33, the active power of the OpAmp can be written
in frequency domain after some manipulations as:

POpAmp(jω) = 2IQVCC +

∣∣∣∣∣ gfω
2
f

(−mω2 + cjω + k)(−ω2 + 2ξfωf jω + ω2
f )− gfω2

f

∣∣∣∣∣ · |fd(jω)|2

+
1

2

∣∣∣∣∣
√

2ξfgfωfωfω

(−mω2 + cjω + k)(−ω2 + 2ξfωf jω + ω2
f )− gfω2

f

∣∣∣∣∣
2

· |fd(jω)|2 (3.61)

Figure 3.35 compares the active power of the OpAmp when the digital electromagnetic shunt and
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Figure 3.35: Power dissipation of the the electromagnetic transducer when it is shunted with RC
elements and when it is used as active control system for PPF.

PPF are implemented. Note that the parameters of the primary system (i.e. mass m and stiffness
k) and the OpAmp are tuned to the values which have been chosen in Section 2.4. According
to the Table 3.3, it is possible to tune the parameters of PPF such that the desired closed loop
damping ratio is realized. In the figure, PPF has been tuned first such that the same closed loop
damping ratio as the one obtained by electromagnetic shunt damper (i.e. η = 0.1581) is achieved.
In this case, low frequency power for PPF is higher than that of the digital shunt. While after the
resonance frequency, the power for PPF starts to decrease faster than that of the digital shunt.
The key parameter to reveal the differnec between the power dissipation of the PPF compared to

Table 3.5: H2 norm of the active power of the OpAmp when different active control strategies are
implemented.

Controller H2 norm

Digital shunt, η=0.1581 994.55
PPF, η=0.1581 994.45
PPF, η=0.4702 2955.30
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that of the digital shunt is the H2 norm of the power. The H2 norm mainly shows the power dissi-
pation over the frequency range of intereset (±∞). However, the H2 norm possess an infinite value
since the high frequency power has a nonzero value due to the quiescent power. By neglecting the
quiescent power, the H2 norm of the power is listed in Table 3.5. From the table, it is interesting
to conclude that H2 norm of the power is almost the same when the PPF and the digital shunt are
tuned to realize the same closed loop damping ratio.

Although η = 0.1581 is the maximum closed loop damping ratio that can be achieved by the
shunt system, PPF can still provide a higher value of the closed loop damping ratio. In Section
3.2.1, the optimal PPF has been defined as the one that provides η = 0.4702 closed loop damping
ratio. Figure 3.35 shows the power dissipation for the optimal PPF. In this case, both low and high
frequency power of the PPF are higher than that of the digital shunt. The H2 norm of the power is
also computed in this case and shown in the Table 3.5. The H2 norm of the power is much higher
than that of the digital shunt system. It should be also noted that the active power, when PPF is
applied, is always positive in the whole frequency range showing that the power is dissipative.

3.5 Conclusions

In Section 3.1, a new resonant control system based on the force feedback configuration, named
RFF, has been proposed and optimally designed to overcome performance limitations of the clas-
sical integral-force-feedback (IFF) when a resonance of a structure is targeted. It has been shown
that RFF can be seen as an active realization of an inerter-spring-damping (ISD) system which can
also be used for vibration damping, vibration isolation and suspension systems in different applica-
tions. Then, its equivalent mass, damping and stiffness have been derived. The controller possess
three unknown parameters including the damping coefficient, tuning frequency and feedback gain.
These parameters have been optimized according to two different tuning laws i.e. the method of
maximum damping and H∞ optimization. The closed-form expressions of these parameters have
been obtained for a single-degree-of-freedom (SDOF) system. It has been shown that second order
filter as the control law in the feedback loop from the force sensor to the force actuator leads to the
design of an absorber with an excellent performance. Therefore, the control authority of a target
mode can be significantly increased using RFF in comparison to IFF. In addition, since α-controller
is another control law to offer a better control performance than the classical IFF, the performance
of RFF has been evaluated in comparison to that of α-controller in terms of the vibration mitiga-
tion and the control effort. Although both techniques provide almost the same control authority,
RFF requires less actuator force than α-controller. Therefore, RFF can be considered as a low
energy consumption technique to enhance the vibration mitigation of flexible structures using force
feedback. It has been also demonstrated in the robustness analysis that RFF brings a superior
performance to that of IFF up to almost 50% changes in the stiffness of the primary system while
IFF can tolerate a higher level of uncertainty.

It is interesting to note that RFF can be used for vibration isolation under a base excitation.
This is proposed as future work.

In Section 3.2, an easy to implement optimal positive position feedback (PPF) control procedure
has been proposed, analyzed and experimentally implemented. The trade-off between the ampli-
tude reduction at the resonance frequency and the amplification of response at the frequencies
lower than tuning frequency has been highlighted and used to optimize the PPF controller. To this
end, the position of the poles of the closed-loop system is determined using the maximum damping
criterion. Then, the parameters of the PPF controller could be expressed as a function of the target
damping in the closed-loop system. The optimal value of the target damping was evaluated using
H2 optimization. It has also been demonstrated, through sensitivity analysis, that the performance
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of the system degrades if the parameters of the PPF are deviated from the optimal values. From
the experimental tests, we could observe that the obtained formula can be effective to calculate the
optimal PPF for lightly damped primary system as well. The extension of the proposed optimal
PPF to damping several modes of the primary structure is the topic of future work.

In Section 3.3, the nonlinear PPF (NPPF) controller was used to damp the vibration of Duff-
ing oscillator, experimentally. Note that the proposed NPPF is numerically introduced and studied
in Appendix B. In fact, the NPPF controller is built upon the classical linear PPF (LPPF) con-
troller but a cubic term is included according to the principle of similarity. It is shown that the
LPPF controller is only effective for weakly nonlinear systems in terms of vibration mitigation,
while the NPPF controller could hold the control efficiency for a relatively large range of forcing
amplitudes. However, the NPPF controller can be also detuned for very strongly nonlinear regimes.
This is because inherently nonlinear dynamical instabilities such as isolas cannot be eliminated by
the proposed controller.

In Section 3.4, the power dissipation of the OpAmp when PPF is implemented has been stud-
ied. The power dissipation has been derived first and then, the corresponding result has been
compared to that of the digital shunt. The main interesting conclusion was the fact the higher
control performance realized by active control systems comes at the price of higher level of power
consumption required for the OpAmp.
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It has been shown in Chapter 2 that shunting electromagnetic devices with electrical networks
can be used to damp vibrations. These absorbers have however limitations that restrict the control
performance, i.e., the total damping of the system and robustness versus parameter variations.
On the other hand, the electromagnetic devices are widely used in active control techniques as an
actuator. Although the active control systems, as presented in Chapter 3, can provide the high
control performance, they mainly suffer from two main shortcomings: 1) the power consumption
required for the actuator and 2) the lack of fail-safe property which means the ability of providing
vibration damping even when the external power source is distorted. Therefore, it is proposed to
design hybrid control systems by combining the passive electromagnetic shunt damper with the
active control systems. The objectives of the hybrid control system are: 1) increasing the control
performance compared to the passive one, 2) reducing the power consumption compared to the
active one, and 3) possessing a fail-safe behavior. In this chapter, two different configurations for
the hybridization of the passive resonant shunt with an active control are considered (Figure 4.1).
In the first configuration shown in Figure 4.1a, the electromagnetic transducer is connected in
series with RC elements and an active voltage source. The active voltage source is proportional to
the velocity of the structure. The total voltage across the transducer (V ) is then obtained by the
summation of the active input voltage (Vin) and the voltage across the RLC circuit. Furthermore
in the second configuration shown in Figure 4.1b, the electromagnetic transducer is connected in
series with the RC circuit, and the active current source is in parallel with the shunting elements.
Considering this configuration, the total current flowing in the transducer (It) is given by the
algebraic sum of the input active current (Iin) and the current flowing inside the RC shunt circuit
(Is = q̇) like It = Is − Iin.
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Figure 4.1: Schematic of a SDOF oscillator attached to an hybrid control system consisting of an
electromagnetic transducer connected to the passive RC shunt (a) in series with an active voltage
source and (b) in parallel with an active current source

4.1 Hybrid electromagnetic shunt damper with an active voltage
source

Considering the active voltage source, the electrical portion of the governing equations are modified
as:

Lq̈ +Rq̇ +
1

C
q + Vin =T ẋ (4.1a)

Vin = −g1T ẋ (4.1b)

By substituting Eq. (4.1b) into Eq. (4.1a), it can be seen that the active voltage source directly
affects the effective coupling constant of the transducer. Therefore, the actuator force is propor-
tional to the current with a new coupling constant T ∗. It is assumed that the transducer is ideal
and there is a perfect balance between the electrical energy and the mechanical energy which means
that there is no energy to be stored in the transducer [25]. According to the energy conservation
principle [83], the variation of the stored energy is the sum of the external power input and the
internal power generation. This concept can be written for the electromagnetic transducer in the
presence of the active voltage source when there is no shunt as:

dW = V dq + fadx = T (1 + g1)
dx

dt
idt+ T ∗idx (4.2)

where d and W are the differential operator and the stored energy, respectively. By equating the
above equation to zero, T ∗ can be obtained as:

T ∗ = T (1 + g1) (4.3)
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Figure 4.2 shows the root locus of the system, shunted with a RC circuit and the active voltage
source in series, for the variation of feedback gain g1. One sees that the system is stable because
the poles are always placed in the left half plane of the locus for all values of the feedback gain
g1. The locus has two complex poles and two zeros at the origin. By increasing the value of the
feedback gain g1, one pole goes toward the origin and the other one goes to infinity. It makes
the system have two different resonances in the vicinity of the primary ones with the lower values
of the damping than the damping of the passive control system. According to the Eq. (2.10b),
the optimal values of the resistance R is proportional to the coupling constant of the transducer.
Considering the new constant of the transducer (Eq. (4.3)), the optimal value of the resistance can
be modified as:

R∗opt =
2T√
kCopt

(1 + g1) (4.4)
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Figure 4.2: Root-locus of the system shunted with RC circuit combined with active voltage source
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Figure 4.3: With the application of the passive control system combined with the active voltage
source, (a) the frequency response of the system for different values of the feedback gain g1 as well
as the resistance R and (b) the impulse response with and without the correction of the resistance
R
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4.2. Hybrid electromagnetic shunt damper with an active current source

Figure 4.3a compares the frequency response of the system with the passive control system com-
bined with the active voltage source for two different values of the feedback gain g1. For each value
of g1, the result is shown with and without correction of the resistance R according to Eq. (4.4)
and Eq. (2.10b), respectively. By updating the value of the resistance in this case, more energy
can be dissipated in the resistor which leads to increase the damping of the system. A larger value
of resistance is required by the application of the active voltage source than the purely passive
system. In order to have a fail-safe and optimum design, the value of resistance should be changed
to the lower one when the active control is turned off. For a specific value of the feedback gain g1,
the impulse response is shown in Figure 4.3b when the value of the resistance R is modified based
on Eq. (4.4). It can be seen that the exponential time-decay rate is maximized by updating the
value of the resistance.

Similar studies have been already published for piezoelectric transducers when an active control
is used to enhance the electromechanical coupling constant and subsequently improve significantly
the passive piezoelectric shunt damping [10, 55, 58].

4.2 Hybrid electromagnetic shunt damper with an active current
source

In the previous section, we could see that the performance is increased when the resistance of the
passive shunt elements changes in proportion to the enhanced coupling constant. In this case (i.e.
increased value of the resistor), the system has a weak fail-safe behavior because the passive control
system is not optimally tuned when the active voltage source is turned off. More details on the
performance degradation of the passive control system in terms of both magnitude of response and
time decay rate can be seen in Figure 2.4 when a higher value of the resistance is chosen. What
follows is the study of the hybrid control system using an active current source.

The equations of motion with the application of the active current source read:

mẍ+ kx = fd + fa (4.5a)

fa = −TIt = −T (q̇ + Iin) (4.5b)

V = L(q̈ + İin) +Rq̇ +
1

C
q = T ẋ (4.5c)

The transfer function of the system from the active current (Iin) to the velocity of the mass (ẋ) is
obtained as:

G(s) =
ẋ

Iin
=

T (Rs+ 1
C )

(ms2 + k)(Ls2 +Rs+ 1
C ) + T 2s2

(4.6)

The root locus of the system i.e. G(s)H(s) when direct velocity feedback (H(s) = −g2
T ) is used

as the active control law is shown in Figure 4.4a for the variation of the feedback gain. It can
be seen that even for low gains, the root locus passes through the imaginary axis and can create
instabilities. This is due to the absence of a zero between the pole of the passive shunt damper and
the primary pole of the structure which are placed right next to each other. A simple alternative
control law is proposed to ensure the stability of the closed loop system. The controller is still
using the absolute velocity of mass, however, the filter is now defined as:

H(s) = −g2
Ls2 +Rs+ 1

C

T (Rs+ 1
C )

(4.7)

The real pole of the controller cancels the zero of the loop gain (G(s)H(s)) and the pair of complex
zeros interacts with the pole of the system. The system is unconditionally stable by the application
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of the active current source because the closed-loop poles are always in the left half plane. Notice
that, in order to avoid a constant component in the feedback loop, a high pass filter at very low
frequency and a low pass filter at very high frequency should be added to the controller. These
filters do not change the controller behavior for the flexible modes. When the feedback gain g2

is zero, both poles of the system are placed right at the same locations thanks to the optimally
design of the passive control system (Chapter 2). By increasing the feedback gain, the closed-loop
damping ratio also increases. One of the pole moves on the upper branch (green branch) and
the other one moves on the lower branch (blue branch). According to the method of maximum
damping, the optimal feedback gain gopt2 can be obtained when the two loops are intersecting at
point ’A’ which is shown in Figure 4.4b. Considering λ = g2ω0/k, the closed-loop transfer function
from the normalized disturbance force f to the normalized velocity ẋ1 is obtained as:

ẋ1

f
=

s(s2 + 2
√
βs+ 1)

(s2 + λs+ 1)(s2 + 2
√
βs+ 1) + βs2

(4.8)

When the two poles of the system have the same damping µ and normalized resonance frequency
δ, the closed-loop transfer function can be re-written as:

ẋ1

f
=
s(s2 + 2

√
βs+ 1)

(s2 + 2µδs+ δ2)2
(4.9)

The following equations are obtained by equating the polynomial coefficients of the denominator
of the fraction on the right hand side of Eqs. (4.8) and (4.9):

4µδ = 2
√
β + λ (4.10a)

4µ2δ2 + 2δ2 = 2
√
βλ+ β + 2 (4.10b)

4µδ3 = 2
√
β + λ (4.10c)

δ4 = 1 (4.10d)

The optimal value of the normalized tuning frequency δ is obtained from Eq. (4.10d) as:

δopt = 1 (4.11)
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Figure 4.4: Root-locus of the system shunted with RC circuit combined with active current source
using (a) direct velocity feedback (H(s) = g2

T ) or (b) Eq. (4.7) for the active control law
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which shows that the closed-loop system has the same resonance frequency as the resonance fre-
quency of the primary one. The optimal value of the normalized feedback gain can be realized by
substituting the damping ratio µ obtained from Eq. (4.10a) and Eq. (4.11) into Eq. (4.10b):

λopt = 4
√
β (4.12)

which yields:

gopt2 = 4
T

ω0

√
k

L
(4.13)

It should be mentioned that the parameters of the passive RC circuit do not change. This results
in a perfect fail-safe behavior because the passive control system is still optimally tuned to provide
ηopt damping when there is no active current in the actuator. Figure 4.5a compares the frequency
response of the passive control system combined with the active current source for two different
values of the feedback gain g2. The optimal value is first used for the feedback gain gopt2 = 126.49
(shown as point ’A’ in Figure 4.4b) and then it is increased to g2 = 200 when a closed-loop pole
touches the real axis (shown as point ’B’ in Figure 4.4b) and the other one merges with the zero.
In this case, the zero cancels one of the poles and the other one adds damping to the system. This
gain (gopt∗2 = 200) can be defined as the second optimal value. Although it might slightly improve
the settling time (Figure 4.5b) in comparison with the one corresponding to the first optimal value,
the power consumption will drastically increase (more details will be discussed in the next section)
and the actuator might be saturated. For more than this value of the gain, the settling time is
no longer minimized although it might realize lower magnitude of response than the magnitude of
response obtained with the optimal values of the feedback gain. It should be mentioned that the
active current source behaves like a direct-velocity-feedback (DVF) which is able to damp several
modes as well. This topic is proposed for future studies.

In the present study, the ideal voltage and current sources have been considered to build the
hybrid configurations. Basically, an ideal voltage source is supposed to have no internal impedance
and an ideal current source is supposed to have an infinite internal impedance [84]. However, this
is not the case for practical voltage and current sources. Therefore, the internal impedance of the
sources can change the total impedance of the shunt when the active control is turned off. This
may result in a problem in fail-safe behavior for practical implementation of the hybrid control
system. This will be more discussed in the future works.
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Figure 4.5: With the application of the passive control system combined with the active current
source, (a) the frequency response and (b) the impulse response of the system for two different
values of the feedback gain g2
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4.3 Powerflow analysis

In the previous section, it has been shown that the hybrid control system can improve the control
performance of the system in terms of the amplitude of response at the resonance frequency. A
question may arise here is what is the main advantage of using a hybrid control system compared
to a purely active control system. To answer this question, it is proposed to analyze the powerflow
between the device and the primary structure due to the fact that an active control system requires
an external power source for its operation. The power which flows at the interface of the structure
and the actuator device can be written as:

P (s) = Faa(jω)× ẋ∗(jω) (4.14)

where P , Faa and ẋ are the power, the control force applied by the active control system, and the
velocity of the mass, respectively. The superscripts ′′∗′′ represents the complex conjugate transpose.
The real part of P is called the active power which corresponds to the dissipative behavior and the
imaginary part is named the reactive power which corresponds to the energy exchanging between
the device and the structure [85]. The average active power Pac and the reactive power Pre can be
written as:

Pac =
1

2
<(P (jω)) =

f2
d

2
<(Gf (jω)×Gcl(jω)×G∗cl(jω)) (4.15a)

Pre =
1

2
=(P (jω)) =

f2
d

2
=(Gf (jω)×Gcl(jω)×G∗cl(jω)) (4.15b)

where Gf (jω) and Gcl(jω) are the frequency response function from the velocity of the structure
to the control force and the frequency response function from the input force disturbance to the
velocity. The expressions for Gf and Gcl are given in Table 4.1. The result which is obtained in
this section is based on a unit forcing amplitude.

Table 4.1: The expressions for Gf and Gcl for different control configurations

Parameters Gcl Gf

Hybrid control-Voltage source
(jω)(−Lω2+(1+g1)Rjω+ 1

C
)

(−ω2+k)(−Lω2+(1+g1)Rjω+ 1
C

)−(g1+1)2T 2ω2 − g1(g1+2)T 2(jω)

−Lω2+(1+g1)Rjω+ 1
C

Hybrid control-Current source
(jω)(−Lω2+Rjω+ 1

C
)

(−ω2+g2jω+k)(−Lω2+Rjω+ 1
C

)−T 2ω2 −g2

DVF jω
−ω2+g3jω+k

−g3

Considering a constant value of the closed-loop damping (=0.47), Figure 4.6a compares the active
and reactive power for purely active control system and the hybrid control systems using active
voltage source and current source, separately. The value of the closed-loop damping ratio (= 0.47)
is chosen arbitrary to see the general trend of the active power and the reactive power through a
large frequency range. DVF is used for the purely active control system. One can be observed that
the active power for all configurations is always positive through the entire frequency range. This
means that the device does not deliver energy in the system and it is hyperstable. The reactive
power for the hybrid control system when the active voltage source is applied is positive before the
resonance frequency and negative after that. This shows the amount of energy exchanged between
the structure and the transducer. The total of positive and negative reactive power is almost zero.

Targeting any closed-loop damping, the integral of the active power through the entire frequency
range changes for any configurations. Therefore, the mean square value of the active power is
considered as the performance index. It can be written as [71]:

E[|Pac|] =

∫ ∞
−∞

|fd(ω)|2

2
|Gf (jω)×Gcl(jω)×G∗cl(jω)| dω (4.16)
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Figure 4.6: Comparison between the purely active control system (DVF) and the Hybrid control
systems, (a) active and reactive power for a specific closed-loop damping ratio (= 47%), (b) the
normalized mean square value of the active power I versus the closed-loop damping ratio. (Dash-
dotted line shows the 0.47 damping ratio)

where |fd(ω)|2 is the power spectral density of the input disturbance force. For the case of white
noise excitation force, it is constant as a function of frequency as (fd(ω) = fd). Therefore, the
mean square value of the power can be simplified as:

E[|Pac|] = |fd|2
∫ ∞
−∞

1

2
|Gf (jω)×Gcl(jω)×G∗cl(jω)| dω (4.17)

The normalized mean square value I is defined to represent the ratio of the active power to the
excitation force with a uniform spectrum density like:

I =
E[|Pac|]
|fd|2

=

∫ ∞
0
|Gf (jω)×Gcl(jω)×G∗cl(jω)| dω (4.18)

Figure 4.6b compares the performance index I as a function of the closed-loop damping ratio. One
sees that the active power is zero for 16% damping ratio and below. This value of the damping is
realized by the passive control system according the considered parameters of the system which is
defined in Section 3.1.1. While there is no external power required to realize 16% damping ratio
by the passive control system, a similar purely active control system requires a large amount of
external power. In addition, the active power for the hybrid control systems is always less than
the purely active control system. However, for high values of the closed-loop damping, the active
power for the hybrid configurations is close to the active power for the purely active control system.
The is because most of the work is done by the active portion of the hybrid systems.

4.4 Robustness analysis

The aim of this section is to analyze the robustness of the designed hybrid control systems com-
pared to the purely passive control system. It is particularly focused on the uncertainty of the
resonant frequency. To this end, the resonance frequency of the structure changes from ten times
lower value to ten times higher value than the resonance frequency of the primary system while the
parameters of the controllers are kept constant. The active part of both hybrid control systems is
tuned in such a way that the closed-loop system is critically damped, i.e. the closed-loop damping
ratio is equal to one, for the primary system (ω0 = 100rad/s).
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Figure 4.7 shows the closed-loop damping ratio against the resonance frequency of the system.
One sees that the performance of the passive control system degrades sharply by changing the
resonance frequency of the system. The active voltage source improves the damping of the system
around the primary resonance frequency. It can still provide more than 30% damping ratio in
the closed-loop system for even 50% changes in the resonance frequency. Furthermore, it can be
concluded from Figure 4.7 that the active current source makes the system incredibly robust. If
ω < ω0, the corresponding hybrid control system can still provide critical damping in the closed-
loop system. Moreover, if ω > ω0, the control performance degrades slowly. For instance, the
controlled system realizes more than 50% damping ratio when the resonance frequency is two times
greater than the primary resonance frequency.

4.5 Conclusions

The hybridization of a passive electromagnetic shunt damper with an active control systems has
been proposed and analyzed in details. The RC shunt has been used in series with an electro-
magnetic transducer as the passive control system. Both the active voltage source in series with
RC elements and the active current source in parallel with it have been proposed for the hybrid
configurations. It has been demonstrated that the system ”electromagnetic device + active voltage
source” can be seen as an equivalent transducer with an enhanced coupling constant T ; equivalence
formulae have been presented. In this case, it has been illustrated that the optimal value of the
resistance R is modified to a larger value as a function of the feedback gain g1 in order to improve
the damping of the system. In addition, it has been shown that the active current source behaves
like a DVF. In this case, the feedback gain g2 has been optimized based on the method of maxi-
mum damping while there is no need to change the parameters of the passive RC circuit. The fact
that R does not need to be changed in this configuration is a major advantage compared to the
implementation of the active voltage source, as it is much easier to implement a fail-safe system.
Moreover, the power consumption has been highlighted to compare the hybrid control systems
and purely active control system (using DVF). As a consequence, it has been presented that both
hybrid control systems can improve the control performance of the purely passive system while it
has less power consumption in comparison with the purely active control system. The designed
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Figure 4.7: (a) Closed-loop damping ratio versus the variation of the resonance frequency when the
control parameters are kept constant and tuned to provide the critical damping for the primary
system i.e. ω = ω0, (b) details near ω = ω0
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4.5. Conclusions

configurations reinforce the robustness of the system because they can sustain a higher level of
uncertainty. In particular, the active current source makes the system significantly robust because
it can realize critical damping even when the resonance frequency is lower than tuning frequency.
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The purpose of this chapter is to study the vibration control of bladed structures. In particular,
vibration control of the bladed drum which is known as the BluM is of interest. The model of
the BluM from different views are shown in Figure 5.1. Due to the complexity of the structure, it
is challenging to directly design vibration control systems for the BluM. Therefore, it is proposed
to consider the bladed rail which is geometrically simpler than the BluM but exhibits the same
dynamic behavior, qualitatively. In doing so, this chapter first review the dynamic behavior of
the BluM both numerically and experimentally. Then, the bladed rail is accordingly designed and
manufactured.

(a) (b) (c)

Figure 5.1: The model of the BluM from a) the general view, b) the front view, and c) the side
view.
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5.1 The BluM

5.1.1 Dynamics of the BluM

Numerical simulations and experimental tests are conducted in the following section to give a better
insight about the vibration characteristics of the BluM. The first set of experiment has been carried
out on the real application which is shown in Figure 5.2a. According to Figure 5.2c, the BluM is
excited by a hammer while the velocity of the tip of a blade is measured by a laser vibrometer.
The FRF of the system from the hammer to the laser is shown in Figure 5.2b. The frequency of
the figure is normalized with respect to the first resonance frequency of the first family. Three
main characteristics of the BluM can be seen from the figure. They include i) the low internal
damping because of high amplification of response around the resonance frequencies, ii) the high
modal density resonances corresponding to the first mode family, and iii) the single resonances,
which are separated from others, corresponding to the resonances of the drum part.
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Figure 5.2: a) Experimental setup of the BluM. b) FRF of the system from the hammer to the
laser vibrometer. c) Schematic of the experimental test.
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In order to show the mode shapes of the BluM, a numerical study based on finite element method
(FEM) in Abaqus has been performed, using quadratic tetrahedral solid elements. According to
Figure 5.2b, there are three resonances before the resonances of the first family. These resonances
have been also observed in the numerical analysis. The mode shapes of these three resonances
are shown in Figure 5.3. It can be seen that the mode shapes appear with two, three, and four
nodal diameter. The mode shapes with two and three nodal diameter are called drum dominate
modes that the maximum deformation appear on the drum. In this case, the blades have only
translational motion caused by the deformation of the drum part. Furthermore, the mode shape
with four nodal diameter corresponds to the couple mode that the maximum motion is distributed
on both the drum and blades.

Figure 5.4 shows mode shapes of three resonances of the first family. The mode shapes corre-
spond to zero, one, and five nodal diameter. Note that these three mode shapes have been chosen
arbitrary among all resonances of the first family to show the typical behavior of mode shapes of
the first family. These modes are called the blade dominate modes where the maximum deforma-
tions occur on the blades. In particular, the maximum deformation occurs at the tip of the blades
that are placed far from the nodal line(s). It can also be seen that the motion of the blades with
respect to the drum represents the first bending mode of the blades. It should be noted that in

(a) (b) (c)

Figure 5.3: Low frequency mode shapes of the BluM with a) two, b) three, and c) four nodal
diameter.

(a) (b) (c)

Figure 5.4: Mode shapes of the first family with a) zero, b) one, and c) five nodal diameter.
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5.1. The BluM

the next mode families, another mode shapes of the blades such as torsion modes or high order
bending modes will be excited. For all resonances in each family, the blades experience the same
behavior although they can still move in-phase or out-of-phase with respect to the ones in their
neighborhood. If all the blades are in-phase, there will be no nodal line and if all of them are
out-of-phase, there will be 38 nodal lines as 76 blades symmetrically placed on the BluM.

Due to the cyclic symmetry of the structure, the mode shapes appear in pair. This is valid for all
types of mode shapes including drum dominate modes, coupled modes, and blade dominate modes
except those with zero and 38 nodal diameters. Assuming the drum is perfectly symmetrical and
the blades are ideally identical, both modes of a pair are associated to the same resonance frequency.
Since imperfections are inevitable in the manufacturing process, the resonances of a pair could be
slightly different. This difference can be negligible. It should be noted that the resonances of a pair
come in orthogonal mode shapes which exhibits the same shape with 90° phase shift. This means
that the blades, which are close to the nodal line in one mode, will have maximum deformation in
the orthogonal mode.

5.1.2 Optimal location of piezoelectric patches

In order to increase the damping of the structure, piezoelectric patches are proposed to be used
because of several reasons including i) they behave almost linearly, ii) they can be found in any size
and shape, iii) they can be used for both active and passive control strategies, iv) they can be used
as sensor and/or actuator for the application of the active control system, etc. In addition, the
piezoelectric patches can have a relatively good electromechanical coupling factor which is defined
as the ability of the transducer to convert mechanical energy into electrical energy and vice versa.
As discussed in [25], this factor has a direct effect on the performance of the control system be-
cause it can determine the observe-ability of the piezoelectric sensor and the control-ability of the
piezoelectric actuator. Moreover, this factor is proportional to the strain energy in the piezoelectric
patch. Consequently, the optimal locations of piezoelectric patches are defined to be the areas of
the structure where the strain energy is larger for a target mode(s). Figure 5.5 presents the strain
energy map of the BluM for three resonances of the first family with zero, one, and five nodal
diameter. In all cases, the maximum strain energy appears close to the root of the blades. Figure
5.6a illustrates the typical strain map of a blade which is placed far from the nodal line. Note
that the strain map of the blades look the same for all the resonances as long as the first bending
mode of the blades corresponding to the first family is considered. Although locating the patches

(a) (b) (c)

Figure 5.5: Strain energy distribution of the BluM for three resonances of the first family with a)
zero, b) one, and c) five nodal diameter.
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(a) (b)

Figure 5.6: a) Typical strain energy distributed on a blade which is excited by a resonance of the
first family. b) A cutted view of the BluM to show the possible location for mounting piezoelectric
patches.

at the blade root clearly maximizes the strain energy, it results in important perturbations of the
aerodynamic flow.

Figure 5.6b shows a cutted view of the internal part of the BluM. The only possible location
of piezoelectric patches on the BluM is highlighted with a red color. This is basically the location
of the BluM where the blades are located on the other side. For this location, Figure 5.7 plots
the strain energy distribution for three resonances of the first family with zero, one, and five nodal
diameters. Interestingly, local strain distributions, caused by the motion of the blades, appear in
this region. Clearly, piezoelectric patches are proposed to be placed on these local deformation
in order to maximize the control-ability and observe-ability. Owing to the application of active
control systems where sensors and actuators are required, the patches come in pair such that two
rectangular piezoelectric patches are mounted on each local deformation. In this case, one patch
of a pair can be used as sensor and other one as an actuator. This is the only configuration of
piezoelectric patches which makes the system observe-able and control-able for all the resonances
of the family. Note that the size of the piezoelectric patches are chosen such that a pair of patches
fully covers the local deformation. If the size of patches are larger than that, two major problems
arise as follow:

� The observe-ability and the control-ability reduce significantly for some modes because of
charge cancellations. The charge cancellation may occur in a patch which covers some local
deformations while the signs of those local strain distributions are not the same. The strain
sign depends on the direction of the motion of the corresponding blade. Thus, two local
deformations have the same strain sign if their blades are moving in-phase. While, they have
an opposite strain sign if their blades are moving out-of-phase. Clearly, a higher number
of nodal diameters brings a higher fluctuation of the strain signs. Therefore, the charge
cancellation in a patch can easily happen for these resonances. On the other hand, it has
been shown in [7] that a large size piezoelectric patch can be still used when only one mode
of the BluM is targeted.

� An active control system becomes impossible to be implemented since the FRF of the open-
loop transfer function from a piezoelectric actuator to a piezoelectric sensor is no longer
collocated in terms of pole-zero pattern. Non-collocated open-loop transfer function makes
the system unstable by closing any feedback loop. More information regarding this concept
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(a) (b) (c)

Figure 5.7: Strain energy map of the internal part of the BluM from side view for three resonances
with a) zero, b) one, and c) five nodal diameters.

is given in [25]. Locating the piezoelectric sensor and the piezoelectric actuator on the area of
the structure where the strain sign does not change guarantees a collocated open-loop transfer
function.

Figure 5.8 shows the schematic of the BluM including piezoelectric patches in the order which have
been explained above. In this configuration, there are 76 independent pairs of patches.

The type of piezoelectric patches still remains to be defined. Among all three main possible
operating modes of piezoelectric patches including the bending mode, the shear mode, and the
longitudinal mode, it is proposed to use piezoelectric patches in bending mode. This is simply be-
cause the other kinds are mainly effective when a relative motion occurs between the two ends of a
patch. In the market, many companies producing piezoelectric patches with specific electromechan-
ical properties. In the following section, different types of piezoelectric patches are experimentally
compared on the BluM.

Figure 5.8: Schematic of the BluM with the piezoelectric patches.
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Figure 5.9a shows the experimental setup with four different types of piezoelectric patches. They
include 1) Piezoelectric Ceramic based on Lead Zirconate Titanate (PIC-151) with 0.2mm thickness
from PI company1, 2) PIC-151 with 0.5mm thickness from PI company2, 3) Macro Fiber Composite
(MFC p2 type) from Smart-Material company3, and 4) Dura-Act transducers from PI company4.
It should be noted that the size of the patches has been modified accordingly such that they fit there.

In order to conduct the experiment, a dSPACE MicroLabBox is used for the data acquisition.
The system is designed first inside the graphical SIMULINK environment of MATLAB and then
compiled. The compiled file is downloaded onto the ControlDesk environment of dSPACE software,
which is connected directly to the MicroLabBox hardware, to be executed in real time. The system
is discretized at a sampling frequency of 40 kHz. A chirp signal has been considered to excite the
actuator in a period of 50 seconds from a frequency 0.9346 times lower than the first resonance of
the first family to a frequency 1.1215 times higher than the first resonance of the first family. The
chirp signal automatically repeats four times in order to be able to average the response in the
post-processing. Figure 5.9b shows the magnitude, the phase, and the coherence of the open-loop
response for four pairs of patches. Most importantly, it can be seen that the open-loop response
are collocated in terms of pole-zero pattern for all cases. However, the FRF starts with a zero for
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Figure 5.9: a) Experimental setup of the BluM with four different pairs of piezoelectric patches.
b) Experimental open-loop response for four different pairs of piezoelectric patches showing a) the
magnitude, b) the phase, and c) the coherence.

1https://www.piceramic.com/en/products/piezoelectric-materials/
2https://www.piceramic.com/en/products/piezoelectric-materials/
3https://www.smart-material.com/MFC-product-main.html
4https://www.piceramic.com/en/products/piezoceramic-actuators/patch-transducers/p-876-duraact-patch-

transducer-101790/
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the PIC(s) and MFC while it starts with a pole for the Dura-Act. It is interesting to note that they
do not present the same observe-ability and control-ability on different resonances. The observe-
ability is determined by the number of resonances appear in the FRF. Also, the control-ability can
be estimated be the distance between the frequencies of the pole and the corresponding zero. Thus,
MFC and Dura-Act qualitatively show a better observe-ability and control-ability in comparison
to the PIC(s). The difference between the MFC and the Dura-Act comes at the static gain. This
is lower for the Dura-Act. This means that a higher value of the feedback gain would be required
in the closed-loop for the Dura-Act.

5.2 The bladed rail

5.3 Numerical modeling of the bladed rail

Figure 5.10 shows the manufactured bladed rail which was made of aluminium. The monobloc
bladed rail comprises five identical blades placed on a support. Its geometry is adapted to that of
the conventional compressor bladed drum (BluM) 5.2a. As a boundary condition, the bottom part
of the structure is clamped to a rigid wall. Due to the complexity of the structure, its finite-element-
model (FEM), shown in Figure 5.11a, was built using shell elements. The normalized frequencies of
the first seventeen modes of the structure are shown in Figure 5.11b. Note that the frequencies are
normalized with respect to the frequency of the first resonance. Clearly, modes can be categorized
into two types. The first type corresponds to the mode family consisting of five resonances with
very close frequencies. Figure 5.12 shows the first mode shapes of the first three families. One sees
that the motion of the blades are dominant such that the mode shapes of the first, second and third
families are representing the first bending, the first torsion and the second bending of the blades,
respectively. Note that the separation of the resonance frequencies in a family depends on the rigid-
ity of the support. In addition, the second type of modes represent the resonances of the support
which are isolated from others. In this study, the vibration of the first family of modes is of interest.

When a piezoelectric patch is used as a sensor, the output voltage is proportional to the relative
rotation of its extremities. Similarly, the moment applied by a piezoelectric patch is proportional
to the relative rotation of its extremities. To maximize the observability and controlability, the
optimal location of these transducers is the area of the structure where the strain energy is max-

Figure 5.10: The bladed rail
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Figure 5.11: (a) Model of the bladed rail structure. (b) Normalized resonance frequencies of the
bladed assemblies (ω1 is the first bending mode frequency of the first family)

imized. The strain energy map of the first five modes corresponding to the first family of modes
is shown in Figure 5.13. One sees that the strain energy is maximized at the root of each blades.

(a) Mode1 (b) Mode6

(c) Mode12

Figure 5.12: First mode shape of the (a) first, (b) second, and (c) third families
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(a) Mode1 (b) Mode2 (c) Mode3

(d) Mode4 (e) Mode5

Figure 5.13: Strain energy distribution of the first five modes corresponding to the first family

However, the patches cannot be placed there because they can easily disturb the aerodynamic flow.
To overcome the aforementioned limitation, it is required to place the transducers on the internal
part of the support. For this area, the strain map is shown in Figure 5.14. It is clearly visible
that a local strain distribution is generated below each blade. The local deformations are sepa-
rated by an artificial nodal line where no strain is generated. Depending on the motion of a blade,
the deformation is either in tension or in compression; and subsequently, the charge generated in
a piezoelectric patch is either positive or negative. In order to avoid charge cancellation in the

Mode1 Mode2 Mode3 Mode4 Mode5

Figure 5.14

Figure 5.15: (a) Strain distribution of the internal part of the support for the first family of modes.
(b) Configuration of the piezoelectric patches on the structure
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patches, the size of piezoelectric patches can not be greater than the local deformation area.

For the application of the piezoelectric shunt damping, one patch can be simply mounted on each
local strain map as shown in Figure 5.16a. While, for the active control strategies, the locations
of piezoelectric sensor and piezoelectric actuator are important with respect to each other since
it directly affect the open-loop transfer function and subsequently the design of the active control
system. Assuming that the relative rotation of the extremities of both sensor and actuator is al-
most the same when they are placed next to each other, the frequency response function (FRF)
from voltage applied by the actuator to the voltage measured by the sensor contains alternating
pole-zero, i.e. collocated system, which is of interest in active control techniques since its phase is
always between -180° and 180°. Consequently, two collocated piezoelectric patches (using one of
them as sensor and the other one as an actuator) are placed on the support below each blade such
that they cover local strain distribution as it can be seen in Figure 5.16b.

Sensor-1
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Sensor-3
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Sensor-5

Actuator-1

Actuator-2

Actuator-3

Actuator-4

Actuator-5

(a) (b)
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G3
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G5

Figure 5.16: Configuration of the piezoelectric patches for the implementation of (a) the passive
resistive shunt and (b) the active control system

5.3.1 Vibration control of the bladed rail

Broadband control system

The aim of this section is to design and compare a passive and an active control device which
are less sensitive to resonance uncertainties. Although resonant controllers like piezoelectric RL
shunt damping outperform broadband vibration absorbers in terms of vibration attenuation, tuning
their parameters is highly dependent on the precise estimation of the primary system resonances.
Therefore, resistive shunt damping is proposed in the present study for the passive control system
due to the robustness to fluctuations of resonances. The piezoelectric patches shown in Fig. 5.16a
are then modeled as charge actuators and voltage sensors. Fig. 5.17a illustrates the frequency-
response-function (FRF) from the charge actuator of each piezoelectric patch to the voltage sensor
of the same patch. Note that the frequency is normalized with respect to the frequency of third
mode. Basically, the frequency of zeroes corresponds to the resonances of the structure when the
electrodes are short-circuited and the frequency of poles is related to the resonance of the structure
when the electrodes are open-circuited. It has been shown by Preumont [?] that assuming the
modes are well separated in frequency, the separation between the frequency of the pole and the
zero determines the maximum attainable damping ratio in the closed loop response for the i-th
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Figure 5.17: (a) The magnitude of the transfer function from charge to the voltage of each piezo-
electric patches. (b) The magnitude of the transfer function from voltage actuator to the voltage
sensor of each pair of patches. (The frequency is normalized with respect to the frequency of third
resonance.)

mode. The maximum modal damping (ξmaxi ) is then given by:

ξmaxi =
ωpi − ωzi

2ωzi
(5.1)

where ωzi and ωpi are the frequencies of zero and pole of the i-th mode, respectively. Fig. ??a
depicts the maximum achievable closed-loop damping of each mode by using different piezoelectric
patches. In order to optimize the damping of each mode, one patch is used to maximize the damp-
ing of one mode. Therefore, first, fourth, fifth, second and third patch are used to maximize the
damping of mode 1, mode 2, mode 3, mode 4 and mode 5, respectively.

On the other hand, low electromechanical coupling between the transducers and the structure
significantly diminishes the control authority of the passive technique. Therefore, let us use a sim-
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Figure 5.18: The maximum attainable closed-loop damping of each mode by the implementation
of (a) the passive resistive shunt, or (b) the active control system
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Figure 5.19: (a) FRFs of the system with no control (blue curve), the active control (red curve) and
the passive absorber (yellow curve), (b) zoom close to the resonances. (The frequency is normalized
with respect to the frequency of third resonance.)

ple broadband active control law, i.e. an integrator, to damp the resonances of the first family
based on the configuration shown in Fig. 5.16b. Fig. ??b shows the magnitude of the transfer
function from each actuator to the collocated sensor for the first two modes. One sees that the
system contains alternating zero-pole configuration with no high frequency roll-off. For each mode,
the frequency of the pole is the same for all pairs because it corresponds to a resonance frequency of
the structure, while the frequency of the zero changes. According to Fig. ??b which demonstrates
the maximum achievable closed-loop damping using different pair of patches, the order of the closed
loop damping ratio is ten times higher than that of resistive shunt.

As it was already explained in the previous section, the maximum displacement of the first family
of modes occurs at the tip of the blades. Then, a representative compliance curve is defined as a
performance index from an excitation force to a displacement sensor which are located at the tip
of one blade. Fig. 5.19 presents the FRFs of the performance index obtained with and without
control devices. This figure shows that the active control system provides an attenuation of the
response amplitude which is 18dB greater than for the passive resistive shunt

Resonant control system

The open-loop transfer function from each piezoelectric actuator to its collocated piezoelectric sen-
sor is shown in Figure 5.16b. One sees that the system contains alternating zero-pole configuration
with no high frequency roll-off. For each mode, the frequency of the pole is the same for all pairs
because it corresponds to a resonance frequency of the blades, while the frequency of the zero
changes. In an active control system, the controllability of a target resonance can be assessed by
the distance between the frequency of the pole and the frequency of the zero. For example, the
third pair is not efficient enough to damp the second resonance due to the close location of second
zero with respect to the second pole. It is also similar for the fourth resonance too. However, this
pair can highly add damping to the first, third and fifth resonances.

The control configuration is shown in Figure 5.20, which is a multi-input-multi-output (MIMO)
system with decentralized control system using the same control law. The choice of the control law
is dependent on the location of zeroes with respect to poles. When the zeroes appear before poles,
the open-loop transfer function is similar to that of a system when a force actuator is collocated
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to a force sensor. For such a system, two active control laws, including a simple integrator, known
as integral-feedback (IF), or a double integrator combined with a real zero, known as α-controller,
were proposed. Therefore, these two control laws are implemented in the present system as shown
below:

H(s) =
gi
s

(5.2)

H(s) =
gii(s+ α)

s2
(5.3)

In order to tune the control parameters, a numerical optimization in MATLAB is employed using
fminsearch function. The optimization consists in maximizing the minimum damping of the system.
Figure 5.21a shows the minimum damping ratio of the first family of modes against the number
of the closed-loops. As it can be seen when all the loops are closed, the minimum damping of
the system is about 2.5% and 8% when the IF or α-controller is used, respectively. To check
how effective the control system is, the performance index of the system is defined as the transfer
function from the force injected at a tip of the fifth blade to the displacement at the same location.
The FRF of the performance index with and without control systems is shown in Figure ??. It can
be clearly seen that the maximum amplitude of response when α-controller is used is three times
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Figure 5.20: Block diagram of the numerical controller architecture.
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Numerical FRF of the performance index with and without control system.
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lower than that of IF controller. Better control performance obtained by α-controller comes at the
expense of a decrease in the phase margin. This can be seen in Figure ?? where the phase margin
is plotted against the number of the closed-loop system. Note that the system is assumed to be
multi-single-input-single-output (multi-SISO).

5.3.2 Experimental result

To perform the experimental tests, a dSPACE MicroLabBox was used for the purpose of both
the data acquisition and the control system. The control configuration is designed first inside the
graphical SIMULINK environment of MATLAB and then compiled. The compiled file is uploaded
into the ControlDesk software connected directly to the MicroLabBox hardware. The system is
running in real time at a sampling frequency of 20 kHz. The measured data were recorded at the
same sampling frequency.
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Va5

Va3

Va1

vtip

s

gi
s+w
s

+
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Figure 5.22: Block diagram of the experimental controller architecture.

In this study, the experiments were performed using only the fourth pair of patches. The configu-
ration scheme for the experimental study is shown in Figure 5.22. Fd and Va are the disturbance
force and the actuation control voltage, respectively. Note that the same piezoelectric actuator
was used for the excitation. A chirp signal generator excited the structure around the first family
of resonances. vtip and Vs are the tip velocity of the fifth blade and the voltage measured by the
fourth piezoelectric patch, respectively. The velocity of the tip blade vtip was measured by the
polytec laser vibrometer. Therefore, the performance index is defined as the transfer function from
the disturbance force Fd to the velocity of the tip blade vtip.

The FRF of the experimental open-loop transfer functions for the first, the third, and the fifth
pairs are shown in Figure 5.23a. The obtained modal damping of the these resonances is 0.5%,
0.062%, 0.055%, 0.05% and 0.045% for the first, second, third, fourth and fifth modes, respectively.
One sees that each pair shows different the observe-ability and the control-ability for each mode.
For example, the firth and the third pairs have no observe-ability and control-ability on the fifth
mode; while, the fifth pair shows high observe-ability and control-ability. This also implies that
almost no strain is generated at the location of the first and the third piezoelectric pairs when the
fifth resonance is excited.

In this study, we only focus on the implementation of an integral feedback. In order to avoid
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Figure 5.23: (a) Experimental FRF of the open-loop transfer function from the fourth piezoelectric
patch to the fourth piezoelectric sensor. (b) Experimental FRF of the performance index with and
without control system.

integrating the low-frequency contents of the sensor, a high-pass filter is also added in the feedback
loop. The optimal value of the feedback gain is tuned following the procedure explained in the
previous section. The FRF of the experimental performance index from the disturbance force to
the velocity of the tip fifth blade is presented in Figure ??. All resonances of the first family are
visible. It can be seen that, the controller can damp the second, third and fifth resonance while it
has no control over the first and fourth resonances as it was expected.

5.4 Conclusions
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Chapter 6

Conclusions and Perspective

The conclusions come here.
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Appendix A

The Parseval’s theorem

The mean square value of the electrical power in time domain Pe(t) read as:∫ ∞
t=−∞

Pe(t) dt =

∫ ∞
t=−∞

V (t)× I∗(t) dt (A.1)

where V (t) and I∗(t) are the voltage and the conjugate of current of a signal. Considering the
inverse Fourier transform, the above equation can be re-written as:∫ ∞

t=−∞
V (t)× (

1

2π

∫ ∞
ω=−∞

I∗(ω)e−jωt dω) dt (A.2)

where I(ω) is the current in frequency domain. After some manipulation, the above integral can
be modified as:

1

2π

∫ ∞
ω=−∞

I∗(ω)× (

∫ ∞
t=−∞

V (t)e−jωt dt) dω (A.3)

The value of parenthesis is equal to the Fourier transform of the voltage. Then, the integral can
be modified as:

1

2π

∫ ∞
ω=−∞

V (ω)× I∗(ω) dω =
1

2π

∫ ∞
ω=−∞

Pe(ω) dω (A.4)

which is equal to the mean square value of the electrical power in frequency domain Pe(ω). It should
be mentioned that similar to the electrical power, this theorem is also valid for the mechanical power
as well: ∫ ∞

t=−∞
Pm(t) dt =

1

2π

∫ ∞
ω=−∞

Pm(ω) dω (A.5)

By considering the Maxwell analogy which states that the force F and the velocity v in mechanical
domain are variables analogous to the voltage V and the current I in electrical domain, we have:∫ ∞

t=−∞
F (t)× v∗(t) dt =

1

2π

∫ ∞
ω=−∞

F (ω)× v∗(ω) dω (A.6)

A.1 A practical example

In the following section, we will use the example of the electromagnetic transducer shunted with
RC elements, which has been discussed in Chapter 2, to calculate the power of the actuator in
the time and the frequency domains. The parameters of the primary system follows the numerical
values explained in Chapter 2 and the parameters of the shunt are tuned according to the Eqs.
(2.10). In order to calculate the power, the following steps need to take:

1. The state space model of the system is extracted. The model contains two inputs and one
output. The inputs are the external disturbance force fd and the actuator force fa, and the
output is the displacement of the mass x.
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2. The model is imported into the Simulink environment.

3. A random noise excitation based on Gaussian distribution is used to excite the system.

4. The passive control system is implemented in the feedback loop.

5. The simulation is running in 10kHz sampling frequency.

6. The simulation is recorded for 100 seconds.

7. The data of the velocity and the actuator force is saved for the calculation of the mechanical
power.

The script below is used to extract the state space model:

clearall
clc
s = tf(′s′);
m = 1; %Mass
k = 1e4; %Stiffness
T = 1; %Coupling constant
L = 1e− 3; %Inductance of the coil
G1 = 1/(m ∗ s2 + k); %Transfer function from disturbance force to the displacement
[b1, a1] = tfdata(G1);
G11 = nd2sys(b1{1, 1}, a1{1, 1});
G2 = 1/(m ∗ s2 + k); %Transfer function from actuator force to the displacement
[b2, a2] = tfdata(G2);
G22 = nd2sys(b2{1, 1}, a2{1, 1});
G = sbs((G11), (G22));
[A,B,C,D] = unpck(G);
sys = ss(A,B,C,D); %State space model

Figure A.1: Configuration of the simulink model to extract the mechanical power of the actuator.
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The configuration of the simulink for the system is shown in the Figure A.1. One sees that the
system is excited by a uniformly random noise signal distributed over all range of frequency. It can
be seen that by derivating the output signal with respect to the time, the velocity of the mass is
obtained. Then, by multiplying the signal to the coupling constant of the actuator T , the signal
will be proportional to the voltage of the actuator according to the Eq. (2.1). Next, the signal
is amplified with a filter (Eq. (2.2)) representing the shunt circuit to extract the current of the
actuator. In the end, the actuator force is obtained when the signal is magnified with the coupling
constant of the actuator T . In order to calculate the RMS value of the mechanical power in time
and frequency domains, the following script is used:

Pm time = Force.Data. ∗ V elocity.Data; %Mechanical power in time domain
Pm freq = fft(Pm time)/sqrt(length(Force.Data)); %Mechanical power in frequency domain
rms Pm time = rms(Pm time)%RMS value of the power in time domain
rms Pm freq = rms(abs(Pm freq))%RMS value of the power in frequency domain

The output is: rms Pm time = rms Pm freq = 9.1991e − 05 which proves the RMS value of
the power i time and frequency domains are equal.
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Appendix B

H∞ optimization of linear and
nonlinear positive position feedback
(PPF)

In this section, the optimal parameters for linear PPF (LPPF) and nonlinear PPF (NPPF) are
derived based on the H∞ criterion.

B.1 H∞ optimization of linear PPF controller

The system with a linear PPF controller is considered first. This is done by setting the parameter
δ in Eqs. (3.56) and (3.57) equal to zero. Thus, the normalized driving point receptance of the
primary structure is then given by:

y1 =
s2 + 2ξαs+ α2

s4 + 2ξαs3 + α2s2 + s2 + 2ξαs+ α2 − β
(B.1)

where s = jω is the Laplace variable and the magnitude of y1 is calculated as:

|y1| =
√

Ω4 + (4ξ2 − 2)α2Ω2 + α4√
(Ω2 − 1)2α4 + 2((2ξ2 − 1)Ω4 + (−2ξ2 + 1)Ω2 + β)(Ω2 − 1)α2 + (−Ω4 + Ω2 + β)2

(B.2)

From the mathematical point of view, the control effectiveness of a PPF controller according to Eq.
(B.1) would be similar to that of a tuned mass damper, where an additional zero is introduced to
interfere with the resonance of the primary system aiming to reduce certain vibration metrics in the
frequency band of interest. Following the H∞ optimization procedure proposed by Den Hartog [64],
the parameters of the linear PPF controller are optimally tuned such that the response at the fixed
points are minimized. Fixed point refers to the frequency location at which the magnitude of the
driving point receptance of the primary structure is invariant in terms of the damping coefficient
of the TMD or the parameter ξ of the PPF controller.
The frequencies at which the fixed points occur can be calculated by differentiating Eq. (B.2) with
respect to the damping coefficient, ξ , and equating the derivative to zero, which yields:

Ωf1 =

√
2α2 + 2− 2

√
α4 − 2α2 + 2β + 1

2
(B.3)

Ωf2 =

√
2α2 + 2 + 2

√
α4 − 2α2 + 2β + 1

2
(B.4)
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The optimal α is set to equalize the resulting performance index as defined in Eq. (B.2) at the
two fixed points. This can be achieved by substituting Eqs. (B.3) and (B.4) into Eq. (B.2) and
equating the resulting expressions for ξ = 0 which yields,

αopt = 1 (B.5)

For the optimal ξ, it is sought to make the performance index pass horizontally through the fixed
points. Thus, two optimal damping coefficients associated with the two fixed points are obtained:

ξ1 =

√
3β

4
√

2(
√

2−
√
β)

(B.6)

ξ1 =

√
3β

4
√

2(
√

2 +
√
β)

(B.7)

The optimal ξ can be calculated in practice by calculating the quadratic average of Eqs. (B.6) and
(B.7), which is given by:

ξopt =

√
3β

4(2− β)
(B.8)

It should be noted that this approach is an empirical method as the resulting resonance points (the
derivative of Eq. (B.2) with respect to Ω is equal to zero) do not necessarily coincide simultane-
ously with the corresponding fixed points. An exact solution for this problem was proposed in Eq.
(B.2), with which the two resulting resonance points are equally damped. In this study this exact
approach is not considered because this would result in very long and therefore rather impractical
polynomial expressions.

Up to now, only the parameter β (normalized feedback gain) is left un-optimized for implementing
the linear PPF controller. The function of the feedback gain β can be assessed by evaluating the
magnitude of driving point receptance at the fixed points. This is done by substituting Eqs. (B.3)
and (B.5) into Eq. (B.2) for ξ = 0 which yields, the minimal maximum response

y1mm =

√
2

β
(B.9)

As shown in Eq. (B.8), the minimal maximum response is inversely proportional to the gain β,
indicating that the value of the feedback gain g should be as high as possible without compromising
the stability of the active system.
The stability of an active system can be studied by applying the Routh-Hurwitz stability criterion
to its closed loop characteristic Eq. (B.6). The characteristic equation of the system can be formed
as:

A4s
4 +A3s

3 +A2s
2 +A1s+A0 = 0 (B.10)

where A0, A1, A2, A3 and A4 are the corresponding coefficients of Laplace variable in the denomi-
nator of Eq. (B.1).
The Routh-Hurwitz stability criterion states that the roots of the characteristic equation have
negative real parts if and only if the following conditions are satisfied:

A0, A1, A2, A3, A4 > 0 (B.11)

A2A3 −A1A4 > 0 (B.12)

A1A2A3 −A2
1A4 −A0A

2
3 > 0 (B.13)
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Figure B.1: The driving point receptance for different active damping ratios

It can be derived that the system is stable if and only if the gain β is defined such that:

β < α2 (B.14)

In the following, numerical studies are performed to illustrate the control effectiveness of the linear
PPF controller for the system under consideration. Figure B.1 shows the performance index |y1|
plotted against frequency for five different damping ratios defined as ξ

ξopt
: 0, 1/4, 1, 4 and∞, where

the control parameters µ is set to its optimal value as given in Eq. (B.5) and the gain is set to 0.2.
It can be seen that all the curves with different damping values intersect at two frequencies and only
with the optimal damping the response at the two fixed frequencies becomes the maximum. One
should also note that the system becomes dynamically softer with the application of PPF control as
the control signal is positively proportional to the displacement of the system in the low frequency
range whereas the PPF control effectiveness is similar to that of a negative spring. However, when
the damping value approaches infinity, the softening effect disappears as the control action is lost.
Figure B.2 depicts the performance index |y1| plotted against frequency for four different feedback
gains namely β : 0, 0.01, 0.05, and 0.5, where the control parameters α and ξ are both set to their
optimal values. As can be seen, the performance index indeed decreases with an increase in the
gain as indicated by Eq. (B.8). With this respect, the feedback gain g of the PPF controller can be
understood to play the same role as the mass ratio between tuned mass dampers and host primary
structures, where better performance comes with a greater values of this quantity. However, the
approximation errors induced by the estimation of the damping parameter ξ is more pronounced
with an increase in the feedback gain. In the same fashion, the response in the low frequency range
will be more amplified because of the negative stiffness effect. Therefore, the maximum feedback
β under H∞ optimization criterion is not only limited by the stability concern, but also by the
amplification of the low frequency response.

B.2 H∞ optimization of nonlinear PPF controller

In this subsection, H∞ optimization of the NPPF controller is performed. Due to the cubic terms,
it is difficult to derive the explicit expression of the performance index from Eqs. (3.56) and (3.57).
As reported in [86, 87, 88], harmonic solutions can be used to approximate the exact solutions
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Figure B.2: The driving point receptance for different feedback gains

with a good agreement. In this study, the performance index is approximated using the first-order
harmonics. Thus, a pair of one-term harmonic balance approximation is assumed as the solutions:

y1 = A1cos(Ωτ) +B1sin(Ωτ) (B.15)

y2 = A2cos(Ωτ) +B2sin(Ωτ) (B.16)

Substituting Eqs. (B.15) and (B.16) into Eqs. (3.56) and (3.57), and applying the approximations
cos(Ωτ)3 = 3/4cos(Ωτ) and sin(Ωτ)3 = 3/4sin(Ωτ), a set of polynomial equations is obtained by
balancing cosine and sine terms:

−A1Ω2 +A1 + gΩ2A2 + 3/4δA1(A2
1 +B2

1) = 1 (B.17)

−B1Ω2 +B1 + gΩ2B2 + 3/4δB1(A2
1 +B2

1) = 0 (B.18)

−A2Ω2 + 2ξαΩB2 −A1 + α2A2 + 3/4δµA2(A2
1 +B2

1) = 0 (B.19)

−B2Ω2 − 2ξαΩA2 −B1 + α2B2 + 3/4δµB2(A2
1 +B2

1) = 0 (B.20)

Although the original nonlinear differential equations have been transformed to a set of nonlinear
algebraic equations, it is not yet possible to find explicit solutions of B.14-B.17. They are instead
solved with approximate solutions. It is further assumed that the nonlinear coefficient δ is a
small quantity and the harmonic coefficients and can be expanded into series with respect to the
primary nonlinear coefficient δ , i.e. A1 = A11 + δA12, B1 = B11 + δB12, A2 = A21 + δA22 and
B2 = B21 + δB22.
Substituting the above ansatz into Eqs. (B.14)-(B.17), and collecting the resulting expressions with
respect to the order of the parameter δ, and omitting the expressions whose orders are higher than
δ1, one obtains:

(βA21 −A11)Ω2 +A11 − 1 = 0 (B.21)

1/4(4βA22 − 4A12)Ω2 + 3/4A3
11 + 3/4A11B

2
11 +A12 = 0 (B.22)

(βB21 −B11)Ω2 +B11 = 0 (B.23)

1/4(4βB22 − 4B12)Ω2 + 3/4A2
11B11 + 3/4B3

11 +B12 = 0 (B.24)

1/4(3A3
21 + 3A21B

2
21)β + 1/4(4α2 − 4Ω2)A22 + 2ξαΩB22 −A12 = 0 (B.25)
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(α2 − Ω2)A21 + 2ξαΩB21 −A11 = 0 (B.26)

(α2 − Ω2)B21 − 2ξαΩA21 −B11 = 0 (B.27)

1/4(A2
21B21 + 3B3

21)β + 1/4(4α2 − 4Ω2)B22 − 2ξαΩA22 −B12 = 0 (B.28)

Solving for Aij and Bij (i = 1, 2, j = 1, 2) from Eqs. (B.18)-(B.25), the resulting solutions are found
to be in terms of the control gains ξ, α, β and the normalized frequency Ω. Due to the complexity,
these expressions are not given here. Nevertheless, the absolute value of the normalized frequency
response |y1(Ω)|, namely the performance index, can be expressed as:

|Q(Ω)| =
√
A2

11 +B2
11 + 2δ(A11A12 +B11B12) + δ2(A2

12 +B2
12) (B.29)

An additional condition is imposed in order to derive the optimal coefficient of the nonlinear
compensator β, which is sought to maintain the equal peaks at the fixed points associated with the
LPPF controller for the linear primary system i.e.:

|Q(Ωf1)| = |Q(Ωf2)| (B.30)

Substituting the optimal setting of α and ξ as given in Eqs. (B.5) and (B.8) as well as the solutions
of Aij and Bij (i=1,2 , j=1,2 ) of Eqs. (B.21)-(B.28) into Eq. (B.30), one obtains:

µopt = 2β − 9/16β2 +O(β3) (B.31)

In fact, Eq. (B.31) represents a simpler and more easily interpretable relation which is the Taylor
series expansion of the exact solution with respect to the feedback gain β given β << 1. The rela-
tive error introduced by the approximation is fewer than 1.5% up to the dimensionless feedback gain.

Up to now, the derivation of the explicit expressions for forming the NPPF controller h(.) is
complete wherein the optimal control parameters µ, α and β are given in Eqs. (B.5), (B.8) and
(B.31), respectively. As for the maximum feedback gain β for the NPPF controller, Eq. (B.14)
which constrains the maximum β for the LPPF controller is still applicable according to the Lya-
punov’s linearisation theory [83]. This theorem states that if the linearized system is strictly stable,
then the equilibrium point for the actual nonlinear system is asymptotically stable. It can be proved
that the nonlinear system coupled with the NPPF controller as described by Eqs. (3.56) and (3.57)
can be linearized to the same linear system as described in Section B.1. However, the Lyapunov’s
linearisation theory is only valid for small range of motions around the equilibrium points (a local
stability theorem) and it is not yet clear what are the boundary conditions for the linearisation
approximations to hold (global stability theorem is needed). It is left for the subject of future work.

B.3 Performance of the NPPF controller

Numerical studies are performed to validate and examine the control effectiveness of the NPPF
controller for the Duffing oscillator. The performance index derived from the system governing
equations given by Eqs. (3.56) and (3.57) is computed using a path-following algorithm combining
harmonic balance and pseudo-arclength continuation [89]. The first 5 harmonics are taken for a
good approximation and the convergence requirement. The stability of the solutions is determined
using Hill’s method and the type of instabilities i.e. fold and Neimark-Sacker bifurcations is detected
using a test function based on the Floquet multipliers [89]. The ‘stability’ in the current context is
referred to as the local stability of the solutions of the nonlinear equations where the system motion
is always bounded. This is different from the concept discussed in Section B.1 and B.2, where the
system motion exponentially increases until the system is destroyed if instability happens. In addi-
tion, a modal damping of 1% is added to the primary structure during the computation in order to
avoid unnecessary numerical errors i.e. infinite-amplitude responses. This particular value is chosen
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Figure B.3: The performance index |y1| with the NPPF controller for the feedback gain of 0.05,
the primary nonlinear coefficient δ of 0.003 and: (a) different values of the nonlinear coefficient (b)
the optimal nonlinear coefficient µ, and comparison with an optimal LPPF controller (—:stable
solution, –: unstable solution, •: fold bifurcation)

as it also represents the modal damping of the experimental set-up that is presented in Section 3.3.2.

The first study is focused on the validity of Eq. (B.31) which describes the optimal coefficient
of the nonlinear compensator i.e. the cubic term of the NPPF controller. Figure B.3a plots the
frequency response of the performance index of the Duffing oscillator attached with a NPPF con-
troller whose parameters are configured as follows: the normalized feedback gain β is set to 0.05,
the damping ratio and the resonance ratio ξ and α are calculated as in Eqs. (B.5) and (B.8),
respectively, the nonlinear coefficient δ is set to 0.003 and the parameter µ varies with respect to
its optimal value as µ/µopt: 1/4, 1/2, 1, 2 and 4. It is seen that the response at the first resonance
frequency increases with an increase of the parameter µ and an opposite trend is observed for the
second resonance peak. The resonance peaks of equal amplitudes are obtained with the optimal
setting of the parameter as given in Eq. (B.31). For the parameter setting µ/µopt = 4, a pair of fold
bifurcations is observed which modifies the stability of the solutions along the frequency response.

Figure B.3b compares the performance index of the Duffing oscillator attached with an optimally
tuned NPPF controller and its counterpart optimal LPPF controller for the same parameter con-
figuration δ = 0.05 and δ = 0.003. As can be seen, the LPPF controller is detuned for the system
under consideration and a hardening behaviour characteristic of cubic springs with positive coeffi-
cients is present at the second resonance peak. On the other hand, the two resonance peaks still
remain approximately equal with the NPPF controller which reveals the superior performance of
the NPPF controller compared to that of the LPPF controller.

For the second study, the comparison between the LPPF and NPPF controllers is extended for
some other values of the nonlinear coefficient δ which is chosen to vary between 0.0001 and 0.008.
Figure B.4a compares the frequency response of the Duffing oscillator with the optimally tuned
LPPF controller. As can be seen, when is smaller than 0.0008, the LPPF controller works prop-
erly, where the responses at the two resonances remain equal and the classical linear results are
observed. This is because the input excitation level is not high enough to trigger the nonlinearity of
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Figure B.4: The performance of the system under consideration where the feedback gain is set
to 0.05 and the primary nonlinear coefficient δ varies between 0.0001 and 0.008: (a) with LPPF
controller, (b) with NPPF controller and (c) quasiperiodic motion at Ω = 1.16 (—:stable solution,
–: unstable solution, •: fold bifurcation, H: Neimark-Sacker bifurcation

the primary system. However when is increased to 0.003, a visible difference between the two peak
amplitudes is observed, which indicates that the optimal LPPF controller starts to be detuned.
Above 0.005, the controller is completely detuned as the response at the second resonance is much
greater than that at the first resonance. It is also noted that a sudden shift of the location of the
second resonance occurs when is increased from 0.003 to 0.005 which is not the case for example
when is increased from 0.005 to 0.008. This phenomenon is observed because there is an isolated
resonance branch, also termed an isola, coexisting with the main frequency response function curve
due to the non-uniqueness solutions of nonlinear equations. For , the isola merges with the main
curve at the second resonance leading to a sudden shift of the resonance. On the ground of the
observed results, it can be concluded that the LPPF is only effective for weakly nonlinear systems
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B.3. Performance of the NPPF controller

in terms of vibration mitigation.

Figure B.4b depicts the control effectiveness of the optimal NPPF controller for the same sys-
tem parameter configuration as that applied for the LPPF controller. It shows that the nonlinear
controller can compensate LPPF detuning until δ reaches 0.005. However, it is not able to fully
eliminate the coalescence of the isola and the main frequency response curve by the proposed NPPF
controller as seen for the case when δ = 0.008. This means that the NPPF controller fails to main-
tain the equal peak property in the presence of a very strong nonlinearity. In addition, another
type of dynamical instability i.e. a pair of Neimark-Sacker bifurcations is observed which leads to
a branch of quasiperiodic solutions. The quasiperiodic solutions are computed using direct time
integration techniques and the maximum peak amplitude is taken as the response for the plot. It is
noted that the quasiperiodic branch suddenly breaks around the first fold bifurcation point and the
quasiperiodic solutions after this point merge with the normal oscillation solutions. This indicates
that the second half branch of the quasiperiodic oscillations may not be stable i.e. it cannot be
physically realized.

A time series of the quasiperiodic motions at Ω = 1.16 is plotted in Figure B.4c. It is shown
that the control performance degrades in the presence of the quasiperiodic motions as the reso-
nance peak is amplified. Nevertheless, the proposed NPPF controller is shown to be able to delay
the occurrence of the coalescence of the isola and the main frequency response function curve for
relatively large forcing amplitudes compared to the LPPF controller, which also allows to extend
the linearity bandwidth of the nonlinear system under control to a relatively large extent. It is
foreseen that this bandwidth can be further extended if β is assumed to be also dependent on the
nonlinear coefficient δ instead of Eq. (B.29) which is solely determined by β. This is also left for
the subject of future work.
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