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The optimum resonance frequency and the damping coefficient for passive Tuned Mass
Dampers (TMD) have been determined using various optimality criteria in the past. In this
study an active damping method using Inertial Actuators (IAs) is considered. Closed form
expressions for the H2 optimal control parameters that minimise the kinetic energy of the

low as practically possible. However, for a given resonance frequency, an optimal pair exists of
the passive damping coefficient of the IA and the feedback gain. Closed form expressions for
these are provided in the paper. It is noted that the amount by which the described active
approach outperforms an optimally tuned TMD having the same mass depends on the squared
ratio of resonance frequencies of the IA and the primary structure.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration control using absorbers is an interesting option for reducing vibrations of various types of mechanical
structures. The attractiveness of the method is that a relatively small extra mass carefully suspended in the primary
structure can lead to significantly reduced responsiveness of the primary structure to forcing [1–4]. The mass is added to the
primary structure via a coupling that can often be approximately represented through a spring–dashpot pair.

Depending on whether the excitation of the primary structure is at a single frequency or comes in a broad range of
frequencies, the coupling is designed using different principles. For example, in the case of simple harmonic excitations at a
single frequency, the stiffness of the absorber coupling can be set such that the resonance frequency of the suspended mass–
spring system equals the excitation frequency. If the absorber damping can be set very low, then its addition to the primary
structure generates virtually a zero in the primary structure input receptance at the excitation frequency. Thus the primary
structure becomes unresponsive to harmonic forces acting at the absorber mass–spring resonance frequency. This type
of absorber is often referred to as a vibration neutraliser. A lot of research work has been carried out on how to tune the
resonance frequency of vibration neutralisers to varying excitation frequencies [5–21], and some work has also been done
on how to achieve a very low damping in the neutraliser, see for example [22].

On the other hand, if the primary disturbance covers a broad frequency range, for example in cases of aerodynamic
loading, vehicle road excitations, earthquakes, or impacts, then adding a zero at a single frequency is not necessarily useful.
o).
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This is because the driving point receptance of the coupled system taken at the primary structure presumably has also got
poles where its amplitudes can be very large and thus the response of the primary structure can be large, too. In such cases
the damping and the stiffness of the absorber could be tuned such that certain vibration metrics are minimised in the
frequency band of interest. Devices with such tuned stiffness and damping are known as TMDs. Some of the earliest studies
on how to tune the stiffness and the damping of a TMD are given in [1,4]. The metrics used were the vibration amplitudes at
resonances, and accordingly the stiffness and the damping of the TMD were set to minimise the maximum response of the
primary structure, that is, to minimise the response at resonances. This is in fact an H1 optimisation of the coupled system
composed by the TMD and the primary structure where the optimisation parameters are the TMD stiffness and the damping
coefficient [1,23].

Alternative valid metric for vibrations of the primary structure is the kinetic energy of the primary structure which is
proportional to its average squared vibration velocity. In this case the optimisation can be performed as well, and it yields
a different set of optimal stiffness and damping of the TMD. This is in fact an H2 optimisation of the coupled system
composed by the TMD and the primary structure where the primary structure kinetic energy is minimised. This type of
optimisation has been performed by Warburton [24]. There are also other possible optimality criteria that can be of interest
and some of the relevant studies can be found in [25–29].

Considering their mechanical layout, TMDs are rather similar to IAs. However, in addition to the passive elastic and
damping forces in the coupling, an active force can be generated between the inertial actuator proof mass and the primary
structure. The force can be made proportional to the primary structure velocity via a fixed negative feedback gain. In this
case an amount of active damping can be generated on the primary structure [30,31]. Such control is an active approach and
thus the stability of the feedback loop needs to be addressed as well. In fact, for stability reasons, it is required that a certain
amount of relative damping between the primary structure and the proof mass is employed in parallel to the active, absolute
damping [31,32]. Furthermore, there is a maximum ratio between the active (absolute) and the passive (relative) damping
which must not be exceeded in order to keep the feedback loop stable [32,33].

This study is focused on the described active damping approach where a damped IA is added to an otherwise undamped
primary structure and its force generator is driven with a signal proportional to the primary structure absolute velocity. It is
shown that there is an H2 optimal combination of the passive and the active damping which, when employed, minimises
the kinetic energy of the primary structure. These passive and the active damping ratios are calculated in the closed form. It
is shown that the optimal active to passive damping ratio is about two-thirds of the maximal ratio allowed by stability
requirements. This means the existence of gain and phase margins. Finally, the kinetic energy of the primary structure under
H2 optimal active control is compared to that under H2 optimal passive control using TMDs having the same proof mass.
A comparison of the two control effects reveals that the active control can significantly outperform the passive control
provided that the resonance frequency of the IA is made low. In fact, the optimally tuned IA outperforms the optimally
tuned TMD having equal mass by an extent which increases with the reduction of squared resonance frequency of the IA.

The paper is structured into 6 sections. In Section 2 the model problem studied and the mathematical formulation are given,
and in Section 3 the H2 optimal active control parameters using IAs are derived. A discussion of relative stability is presented in
Section 4. Finally, Section 5, which gives the comparison of the passive and active control effects, is followed by the conclusions.

2. Model problem and mathematical formulation

The inertial actuator is used to implement a velocity feedback loop which comprises a velocity sensor mounted onto the
primary structure and a force actuator parallel to the passive mount. The output of the sensor is amplified by a negative gain
and fed back to the actuator (Fig. 1).

As can be seen in Fig. 1, the primary structure is modelled as an undamped, lumped parameter one degree of freedom
(dof) system, defined through the mass m1 and the stiffness k1. It is excited by the primary excitation force f p, which is
assumed to be a white noise random force with the flat spectral amplitude equal to unity.

Next, the kinetic energy of the primary structure is calculated and its dependence on the passive and active control
parameters is established. A dimensionless parameter Ik is introduced to represent the kinetic energy, which is defined as
the ratio of the kinetic energy of the primary system to the excitation force with a uniform power spectral density Sf ðωÞ [29]:

Ik ¼
m1E½jv1j2�
2Sfω1=k1

; (1)

where E[ ] denotes the expectation value, v1 is the velocity of the primary structure, and ω1 is the circular resonance
frequency of the primary structure. The mean squared value of the velocity of the primary structure can be expressed as

E½jv1j2� ¼
Sfω1

m1k1

Z þ1

�1
jY1;pj2dΩ; (2)

where Ω¼ω=ω1 is the dimensionless frequency and Y1;p is the dimensionless driving point mobility of the primary system
defined as

Y1;pðΩÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
k1m1

p v1
f p
ðiΩÞ: (3)



primary 

structure

Fig. 1. The schematic of the active vibration control using an IA and a velocity feedback loop.
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From Eqs. (1)–(3) the kinetic energy of the primary mass excited by a white noise spectrum of unit amplitude is given by

Ik ¼
1
2

Z þ1

�1
jY1;pj2dΩ: (4)

The non-dimensional driving point mobility for the active control with the IA can be expressed as

Y1;p ¼
� iΩ3�2ηfΩ2þ iΩf 2

Ω4�2ið1þðξþ1ÞμÞf ηΩ3�ð1þðμþ1Þf 2ÞΩ2þ2iΩηf þ f 2
; (5)

where i¼
ffiffiffiffiffiffiffiffi
�1

p
, μ¼m2=m1, f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2m1=k1m2

p
, η¼ c2=2

ffiffiffiffiffiffiffiffiffiffiffi
k2m2

p
, ξ¼ g=c2 and g is the feedback gain.

According to [34] the performance index Ik can be calculated as

IIAk ¼ πð1þðμξþ1þμÞf 4þð4η2�μξ�2Þf 2Þ
2ημf ðξþ1�ξðμξþ1þμÞf 2Þ

: (6)

3. H2 optimal active control using IAs

In this section the H2 optimal active control parameters are derived in the closed form. Eq. (6) gives the performance
index IIAk as a function of the system parameters. Assuming that the resonance frequency f is fixed, the optimal values of η
and ξ to minimise the performance index IIAk are derived by solving the following system of equations for η and ξ:

δIIAk
δη

ðf ; η; ξÞ ¼ 0; (7)

δIIAk
δξ

ðf ; η; ξÞ ¼ 0 (8)

or

1þðμξþμþ1Þf 4þð�4η2�2�μξÞf 2 ¼ 0; (9)

½ðξþ1Þμþ1�2f 6þ½ð�4ξ�2þ8ξη2þ4η2Þμ�3þ4η2�μ2ξ2�f 4þð2μξ�4η2þ3Þf 2�1¼ 0: (10)

Then the optimal active and passive damping ratios can be calculated as

ηIAopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6½ðμþ1Þf 4þðμ�2Þf 2þ ffiffiffi

p
pq

þ1�
12f

; (11)

ξIAopt ¼
ffiffiffi
p

p �5�ð5þ5μÞf 4þð10þμÞf 2

6μf 2ðf 2�1Þ
; (12)
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where p¼ 1þðμþ1Þ2f 8þð14μ2�2μ�4Þf 6þðμ2�2μþ6Þf 4þð2μ�4Þf 2 is a substitution to shorten the expressions. The perfor-
mance index under optimal setting can be expressed as

IIAk;opt ¼
3π

ffiffiffi
6

p
f 2ðf þ1Þ2ðf �1Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ1Þf 4þðμ�2Þf 2þpþ1

q
ðμþ1Þ2f 8�ð4þ2μþ10μ2Þf 6þ½μ2þðp�2Þμþ6þp�f 4þðμ�2Þðpþ2Þf 2þpþ1

: (13)

The optimisation has been performed without considering the frequency ratio as an optimisation parameter. However, as
shown in Fig. 2, where the optimal performance index, as defined in Eq. (13), is plotted against the mass and the frequency
ratio, there is no optimal frequency ratio. On the contrary, there is a frequency ratio that is to be avoided, especially for small
mass ratios, where the optimal performance index increases. This frequency ratio is close to unity.

The lowest levels of the optimal performance index are in the range where the frequency ratio is below one. In this range
the trend is that a decrease in the performance index comes with a decrease in the frequency ratio. The mass ratio would
normally be well below unity for a lightweight IA; that is, only a small mass would be added to control vibrations of the
primary structure. Thus, the lower the frequency ratio, the better the reduction in the performance index. The lower limit on
the frequency ratio can be imposed by practical problems related to designing very compliant springs k2 combined with the
small size of the actuator (see for example [30]). Also, as discussed later in the paper, the phase margin of the system under
active control tends to decrease as the frequency ratio is lowered.

In conclusion, the frequency ratio and the mass ratio should be below one: the mass ratio due to the lightweight design,
and the frequency ratio for better performance. If they are set to be considerably smaller than one, then it is possible
to approximate expressions (11)–(13) in order to obtain simpler and more easily interpretable relations. Developing
expressions (11)–(13) into series with respect to the frequency ratio f and keeping only the lowest-order terms yield
approximate expressions for optimal control with reasonable accuracy for a lightweight, low frequency IA:

ðηIAoptÞf⪡1;μ⪡1 �
ffiffiffi
3

p

6f
; (14)

ðξIAoptÞf⪡1;μ⪡1 �
2

3μf 2
; (15)

ðIIAk;optÞf⪡1;μ⪡1 � 3π
ffiffiffi
3

p
f 2: (16)

The relative errors introduced by the approximations are below 5 percent up to the mass and frequency ratios of 20
percent.

The exact optimal control parameters as given in Eqs. (11)–(13) are shown in Fig. 3. The shapes of the three plots indicate
why approximations (14)–(16) are reasonable. For example, the optimal passive damping ratio does not depend much on
the mass ratio, so the simplified expression given in Eq. (14) does not include the mass radio.

Next, the effects of using the IA with velocity feedback are illustrated on an example system where both the mass ratio
and the frequency ratio are set to 0.1. The passive damping ratio is set to optimality according to Eq. (11). Fig. 4(a) shows the
primary structure driving point mobility plotted against frequency for six different active damping ratios: 0, 1/20 1/5, 1/2, 1,
and 3/2. Fig. 4(b) shows the primary structure performance index plotted against the normalised active damping ratio ξ=ξIAopt.

It can be seen in Fig. 4(a) that as the active damping ratio is increased from zero, vibrations of the primary structure are
reduced at the primary structure resonance at Ω¼ 1. As the active damping is further increased, a new resonance peak
occurs around Ω¼ 0:1, which is the resonance of the IA. As shown in Fig. 4(b), this causes the performance index IIAk to
increase from its minimum value at ξIAopt towards infinity as the active damping ratio approaches 3/2. If the optimal active
damping ratio is implemented, then the performance index is minimised as can be seen in Fig. 4(b).
Fig. 2. The optimal performance index IIAk;opt plotted against the mass ratio and the frequency ratio.



Fig. 3. The exact H2 optimal parameters: (a) is the optimal passive damping ratio (dB), (b) is the optimal active damping ratio (dB), and (c) is for the
performance index IIAk;opt under the optimal setting (dB).

Fig. 4. (a) The driving point mobility of the primary structure under different active damping ratios and (b) the performance index plotted against the
normalised active damping ratio. The passive damping ratio is kept constant and set to the optimal value.
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The same example system is used next to illustrate the evolution of the performance index IIAk against the passive and
the active control parameters. Fig. 5 shows the performance index IIAk plotted against the normalised passive damping ratio
η and the active to passive ratio ξ. An abrupt increase in the performance index IIAk can be seen as the normalised active
damping ratio approaches 1.5, suggesting that the system may be touching on the verge of a stability limit. Also, in Fig. 4(a)
the increased primary structure response around the IA resonance indicates control spillover, an effect that usually precedes
the breach of the stability limit.

For these reasons the stability of the active system needs to be addressed as well. Although it is guaranteed if the optimal
active damping ratio is used, it is not clear what the gain and the phase margins are in such a case. In the forthcoming part of
the study it is shown that relative active to passive damping ratios exist that define the bordering line between stable and
unstable systems. In particular, it is shown that the H2 optimal systems are at a distance from this line.
4. Relative stability of the H2 optimal active control using IAs

The stability of an active system can be studied by applying the Routh–Hurwitz criterion to its closed loop characteristic
equation [35]. This yields a system of four inequalities arising from the requirement that the four principal diagonal minors
of the Routh–Hurwitz array are positive:

ξ4�1�1
μ
; (17)

ξ4�1�1
μ
þ 1

μðμf 2þ f 2þ1Þ
; (18)
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ξ4
1�μf 2� f 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�μf 2� f 2Þ2þ4μf 2

q
2μf 2

; (19)

ξo
1�μf 2� f 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�μf 2� f 2Þ2þ4μf 2

q
2μf 2

: (20)

Taking into account the fact that the mass ratio μ, the frequency ratio f, and, in principle, the active damping ratio ξ are
positive real numbers, it is possible to see that any positive real ξ satisfying inequality (18) automatically satisfies inequality
(17). Also the condition in inequality (19) is stricter than the condition in inequality (18). The proof is given in Appendix A of
this paper. Furthermore, Eq. (20) gives the maximum negative active damping stability limit if the feedback loop applying
positive velocity feedback is used (a sort of active “undamping”).

In conclusion, the range of ξ where the stability requirements are satisfied is given by inequalities (19) and (20):

�μf 2� f 2þ1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�μf 2� f 2þ1Þ2þ4μf 2

q
2μf 2

oξo
�μf 2� f 2þ1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�μf 2� f 2þ1Þ2þ4μf 2

q
2μf 2

: (21)

In order to simplify the expressions given in Eq. (21), the boundaries for the maximal/minimal active damping ratio can
be developed into Taylor series with respect to the frequency ratio f such that the expressions in (21) are approximated
using the lowest-order terms of the expansion. Consequently they shorten to

�1oξo 1

μf 2
; (22)

where the maximum positive active to passive damping ratio is defined as the critical active to passive damping ratio
ξIAcrit ¼ 1=μf 2. The critical active to passive damping ratio ξIAcrit calculated here is identical to that given in [32].

On the other hand, the maximum negative active to passive damping ratio (the minimum) is around �1, as shown by
Eq. (22); that is, the system will go unstable if the negative active damping cancels the passive damping generated by
dashpot c2.

The approximated optimal active to passive damping ratio is about 2/3ds of the approximated critical one. This is an
equivalent of a 3.5 dB gain margin which is independent of the parameters of the primary structure and the absorber as long
as the resonance frequency of the absorber is significantly below the resonance frequency of the primary structure. The gain
margin of an active system can also be seen from the kinetic energy point of view in Fig. 4(b) and in Fig. 5, which both
indicate that IIAk rapidly increases when the feedback gain approaches its critical value of 150 percent of the optimal value.

Considering now the phase margin, it can be better interpreted using the Nyquist stability criterion. The phase margin is
given by

PM¼ πþ∠fGðiΩgcÞHðiΩgcÞg; (23)

where GðiΩÞ is the dimensionless sensor–actuator open loop frequency response function, HðiΩÞ is the dimensionless
frequency response function of the feedback controller, and Ωgc stands for the dimensionless gain crossover frequency. The
gain crossover frequency is given by

jGðiΩgcÞHðiΩgcÞj ¼ 1: (24)
Fig. 5. The performance index IIAk (dB) plotted against the normalised passive damping ratio η=ηopt and the normalised active to passive damping ratio
ξ=ξIAopt with μ¼ 0:1 and f ¼ 0:1.



Fig. 6. (a) Magnitude and phase plots and (b) Nyquist plot for the sensor–actuator open loop frequency response function under the optimal setting with
μ¼ 0:1 and f ¼ 0:1.
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GðiΩÞ can be calculated as follows:

GðiΩÞ ¼ Y1;1ðiΩÞ�Y1;2ðiΩÞ; (25)

where Y1;1ðiΩÞ is the dimensionless driving point mobility of the primary structure, and Y1;2ðiΩÞ is the dimensionless
transfer mobility between the force acting on the reaction mass and the primary structure velocity.

Expressions for Y1;1ðiΩÞand Y1;2ðiΩÞ in the case of the open loop (g¼0) are as follows:

Y1;1ðiΩÞ ¼ ðΩ2� f 2�2iΩηf ÞΩ
2ηf ð1þμÞΩ3�2ηfΩþ iðΩ4�ð1þð1þμÞf 2ÞΩ2þ f 2Þ

; (26)

Y1;2ðiΩÞ ¼ ð� f �2iΩηÞΩf

2ηf ð1þμÞΩ3�2ηfΩþ iðΩ4�ð1þð1þμÞf 2ÞΩ2þ f 2Þ
: (27)

The dimensionless frequency response function of the feedback controller is given by

HðiΩÞ ¼ 2μf ηξ: (28)

The open loop frequency response, GðiΩÞHðiΩÞ, can thus be expressed as

GðiΩÞHðiΩÞ ¼ 2μf ξηΩ3

2ηf ð1þμÞΩ3�2ηfΩþ iðΩ4�ð1þð1þμÞf 2ÞΩ2þ f 2Þ
: (29)

The magnitude, phase and Nyquist plots of the open loop frequency response, GðiΩÞHðiΩÞ, are shown in Fig. 6, where η
and ξ are set to their optimal values given in Eqs. (14) and (15), respectively, with μ¼ 0:1 and f ¼ 0:1. The phase margin is
marked as the angle θ in Fig. 6(b).

By substituting Eq. (29) into Eq. (23) the phase margin can be calculated as

PM¼ πþ∠
2μf ξηΩ3

gc

2ηf ð1þμÞΩ3
gc�2ηfΩgcþ iðΩ4

gc�ð1þð1þμÞf 2ÞΩ2
gcþ f 2Þ

( )
: (30)

If η and ξ are set to their optimal values, the phase margin can be calculated only in terms of the non-dimensional gain
crossover frequency, the mass ratio and the frequency ratio:

PM¼ πþ∠
2
ffiffiffi
3

p
Ω3

gc

9f 2ð
ffiffiffi
3

p =3ð�1þðμþ1ÞΩ2
gcÞΩgcþ iðΩ4

gc�ð1þðμþ1Þf 2ÞΩ2
gcþ f 2ÞÞ

( )
: (31)

The frequencies Ωgc that satisfy Eq. (24) can be calculated as the roots of the following polynomial:

9f 4ð3Ω8þðð�6�6μÞf 2�5þ2μþμ2ÞΩ6

þð3ð1þμÞ2f 4þð6μþ12Þf 2�2μþ1ÞΩ4

þð1þð�6�6μÞf 4�6f 2ÞΩ2þ3f 4Þ�4Ω6 ¼ 0:

(32)
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Since the polynomial in Eq. (32) is bi-quartic, it is not practical to calculate explicit expressions for the roots. However, if
the frequency ratio is significantly smaller than one, the left-hand side of Eq. (32) can be expanded into Taylor series with
respect to the frequency ratio f around zero which yields

3Ω6þ μ2þ2μ�5� 4

9f 4

 !
Ω4þð1�2μÞΩ2þ1¼ 0: (33)

The Taylor expansion is applied to the smaller positive real root to obtain

Ωgc;1 ¼
ffiffiffi
6

p

2
f þOðf 3Þ: (34)

The open loop frequency response, GðiΩÞHðiΩÞ, at the gain crossover frequency Ωgc;1 can be then expressed as

GðiΩgc;1ÞHðiΩgc;1Þ ¼ �1� f 2�3μf 2

2
þ

ffiffiffi
2

p
f

2
iþOðf 3Þ: (35)

The absolute value of the phase margin is then calculated using Eq. (23) and neglecting the higher-order terms:

jPMj �
ffiffiffi
2

p
f

2
(36)

which is valid if the frequency ratio f is significantly smaller than one. The relative error introduced by the approximation is
less than 3 percent up to the mass ratio and the frequency ratios of 20 percent.

In conclusion, in order to get a larger phase margin, the frequency ratio f should be increased. However, as can be seen in
Fig. 2, the optimal performance index IIAk;opt in Eq. (13) increases with an increase in the frequency ratio f degrading the
control performance. Therefore, there is a trade-off in choosing a suitable frequency ratio f. For better control performance it
should be decreased, whereas for better robustness in terms of the phase margin it should be increased.

In the next section the control performance achieved using optimally tuned inertial actuators is compared to that
achieved using optimally tuned mass dampers, according to Warburton [24]. The frequency ratio in the case of the control
using IAs depends on the design of the actuator, but it is assumed that it can be set to a value significantly below unity. Since
the frequency ratio is a compromise between the relative stability requirements and the control performance, the TMD/IA
comparison results are expressed as a function of the frequency ratio.

5. Comparison of the passive control effect using TMDs and active control effects using IAs

Next, the vibration control effects obtained with IAs are compared to those obtained with TMDs. In order to do this, the
Control Performance Ratio (CPR) is defined as

CPR¼ IIAk;opt
ITMD
k;opt

; (37)

where ITMD
k;opt is the performance index corresponding to an optimally configured passive TMD, such that the stiffness and the

damping coefficient of the TMD are set to minimise the kinetic energy of the primary structure per white noise excitation
[24]. The optimal parameters for the TMD and ITMD

k;opt are listed in Table 1.
After substituting from Eq. (13) and Table 1, the CPR is developed into Taylor series around f¼0:

CPR¼ ð3
ffiffiffi
3

p
Þ=2f 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμðμþ1ÞÞ

p
þOðf 4Þ: (38)
Table 1
Summary of the optimal parameters derived under H2 optimisation criterion for TMDs and IAs.

Optimal parameters TMDa IAb ðμ⪡1; f⪡1Þ
Passive damping ratio

ffiffiffi
μ

p
2

ffiffiffi
3

p

6f
Frequency ratio 1ffiffiffiffiffiffiffiffiffiffi

μþ1
p ⪡1

Active to passive damping ratio – 2

3μf 2

Performance index 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðμþ1Þ

p 3π
ffiffiffi
3

p
f 2

Gain margin (dB) – 3.5
Phase margin (radians) –

ffiffiffi
2

p

2
f

a Warburton [24].
b This study.
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Thus, the Control Performance Ratio for low frequency, lightweight IAs expressed in dBs is

CPR� 4;15þ5 log10½μðμþ1Þ�þ20 log10f : (39)

It is possible to see from Eq. (39) that halving the frequency ratio of an IA gives an extra 6 dB vibration reduction over the
optimally tuned passive absorber having the same mass, and decimating it gives an extra 20 dB reduction. This is illustrated
in Fig. 7, where the Control Performance Ratio is plotted against the frequency ratio for various mass ratios.

It can be noted in Fig. 7 that the improvement achieved using the active control over the passive control approach is
more evident for a smaller added mass of the device.

Finally, the two control methods are compared on an example system, and the effects of adding either an optimally tuned
TMD or an optimally tuned IA onto an undamped primary structure are illustrated. The mass ratio μ is assumed to be 0.1 for
both cases, and the frequency ratio f for the passive TMD is calculated according to [24] (Table 1), while for the active IA the
frequency ratio f is set to 0.1. Fig. 8(a) shows the amplitude of the primary structure driving point mobility plotted against
the dimensionless frequency for the two cases.

It can be seen that the amplitude of the driving point mobility in the case of the passive control is higher than the
amplitude of the driving point mobility in the case of the active control at all frequencies except around the resonance
frequency of the IA. This is due to the fact that the active control generates control spillover at frequencies around the
inertial actuator resonance. Thus the optimal active control is a trade-off between the vibration reduction at around the
resonance frequency of the actuator and that around the resonance frequency of the primary structure. This compromise,
however, can be achieved with significant improvement in vibration reduction over the passive control approach.

In Fig. 8(b) a case is considered where the resonance frequency of the IA is increased to be the same as the optimal
resonance frequency of the TMD. The optimal passive and active damping ratios are set according to Eqs. (11) and (12). This
situation is relevant if the vibration reduction performance of the active system is to be preserved in case of power supply
disruption. It can be seen that with increased resonance frequency the benefits of using the active control are lost and the
two dashed lines in plots (a) and (b) are nearly the same.
Fig. 8. The amplitude of the primary structure driving point mobility plotted against the dimensionless frequency. Plot (a) dashed line is for an optimally
tuned mass damper and the solid line is for an optimally tuned IA having a resonance frequency 1/10th the resonance frequency of the primary structure.
Plot (b) the solid line is for an optimally tuned IA having an increased resonance frequency such that it is the same as the optimal resonance frequency of
the TMD and the dashed line is the same IA when the active control ratio is zero due to a possible power supply disruption.

Fig. 7. The ratio of the control performance (CPR) between H2 optimally tuned IAs and TMDs for different mass ratios, as a function of the frequency ratio.
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6. Conclusions

The optimal tuning parameters for the active control using IAs are derived and summarised in Table 1. These are the
passive damping of the actuator dashpot and the active damping determined through the velocity feedback gain. There is no
optimal resonance frequency for the active control using IAs; instead it should be as far below the resonance frequency of
the primary structure as practically possible. Depending on how low the frequency ratio can be, the active control can
outperform the passive control for the same added mass. Halving the frequency ratio gives an extra 6 dB vibration
reduction; decimating it gives an extra 20 dB reduction. The improvement in the vibration reduction using the active control
over the passive control is more evident for a smaller proof mass. In the case of the active control the gain margin is constant
and equals 3.5 dB. The phase margin decreases linearly with a decrease in the frequency ratio. It is noted that the optimal
active control is a trade-off between the vibration reduction at around the resonance frequency of the actuator and that
around the resonance frequency of the primary structure. Also the frequency ratio is a trade-off between the control
performance and the relative stability in terms of the phase margin.
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Appendix A

In this appendix to the paper it is shown that the difference between the right-hand sides of inequalities (19) and (18) is
positive, or, in other words, the stability criterion given in Eq. (19) is the stricter one. The difference E is given by

E¼ �μf 2� f 2þ1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�μf 2� f 2þ1Þ2þ4μf 2

q
2μf 2

þ1þ1
μ
� 1

μðμf 2þ f 2þ1Þ
: (A1)

By grouping together the first three terms of the right-hand side of Eq. (A1), the difference E takes the form

E¼
μf 2þ f 2þ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�μf 2� f 2þ1Þ2þ4μf 2

q
2μf 2

� 1

μðμf 2þ f 2þ1Þ
: (A2)

The expression inside the square root in Eq. (A2) can be reassembled asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�μf 2� f 2þ1Þ2þ4μf 2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμf 2þ f 2þ1Þ2�4f 2

q
: (A3)

E is then rewritten as

E¼ μf 2þ f 2þ1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμf 2þ f 2þ1Þ2�4f 2

q
2μf 2

� 1

μðμf 2þ f 2þ1Þ
: (A4)

By grouping the right-hand side of Eq. (A4) one can obtain

E¼
μf 2þ f 2þ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμf 2þ f 2þ1Þ2�4f 2

q
μðμf 2þ f 2þ1Þðμf 2þ f 2þ1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμf 2þ f 2þ1Þ2�4f 2

q
Þ
; (A5)

where both the numerator and the denominator can be multiplied by μf 2þ f 2þ1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμf 2þ f 2þ1Þ2�4f 2

q
such that the

difference E takes the following form:

E¼ 4f 2

μðμf 2þ f 2þ1Þðμf 2þ f 2þ1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμf 2þ f 2þ1Þ2�4f 2

q
Þ2
: (A6)

Since m and f are both positive, it can be seen from Eq. (A6) that the difference E between the right-hand sides of
inequalities (19) and (18) is always positive.
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