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Nomenclature

cn = damping constant of damper n
Fa = control force
Fs = measured force
H = control law
kn = stiffness of spring n
mn = mass of dof., n
xn = displacement of dof., n
zi = angular frequency of zero, i
α = tuning parameter
β = tuning parameter
ξi = modal damping of mode i
ωi = angular frequency of pole i

I. Introduction

OVER the years, an increasing number of applications
require both large and rigid structures, which are, by essence,

conflicting requirements. Emblematic examples are found in the
high-technology industry (e.g., lithography machines), in aerospace
applications [1–3], in civil engineering, and in facilities dedicated to
experimental physics (large segmented telescopes, synchrotrons,
particle accelerators) [4]. To some extent, the disturbing effect of
spurious structural resonances can be mitigated by adding active
damping over a large bandwidth. During the last three decades,
several control strategies have been proposed, based on the so-called
passivity concept or, equivalently, on the power port concept. The
basic idea consists of measuring the structural motion and using it to
apply a force that is proportional to the structure velocity in order to
increase the structural damping. Some examples are direct velocity
feeback [5], lead control [6], or positive position feedback [7]. In [8],
the integral force feedback (IFF) has been proposed, where active
damping is obtained by driving actuators with signals proportional to
the integral of the forces applied to the structure. Additionally, when
the force sensor is collocated with the actuator, it has been shown that
the open-loop transfer function has alternating poles and zeros [9].

Although very attractive on the ground of its simplicity and
guaranteed stability, even for multiple inputs multiple outputs
(MIMO) systems [10], the IFF still exhibits two limitations.
The first one is that the achievable damping decreases at high fre-

quency. As a consequence, the strategy offers limited damping on
high-order modes of flexible structures. In this Note, we propose a
modification of the IFF, which significantly increases the damping of
a selected mode. The second limitation is that the active damping is
obtained at the cost of a degradation of the compliance at low fre-
quency, compromising the capability of disturbance rejection. To
some extent, a tradeoff between damping and stiffness can be reached
by adequately high-pass filtering the control signal [11,12]. Unfortu-
nately, the filter may in turn compromise the guaranteed stability of
the IFF, whereas the stability remains unconditional with the pro-
posed controller.
The Note is structured as follows. Section II presents the simple

model that will be used to illustrate the performance of the controller.
Section III briefly reviews the IFF. Section IV presents the modified
controller, alongwith analytical formulas to obtain the optimal damp-
ing of a target resonance mode. Section V discusses the compliance
issue inherent to the IFF, and shows that high-pass filtering the new
controller does not compromise its guaranteed stability. Section VI
draws the conclusions and discusses future works.

II. Suspended Flexible Structure

The performance and limitations of the controllers studied will
be discussed on a simple two-degree-of-freedom system, shown in
Fig. 1. It represents sensitive equipment mounted on an active sup-
port. The mass suspended has been divided in two parts in order to
represent the flexibility of the equipment. The ground motion or the
vibration source is represented by x0 (it can be due also to a larger
structure to which the flexible equipment is attached), Fa is the
actuator force, andH is the controller. The active mount is equipped
with a force sensorFs that measures the force applied by the actuator
on the equipment, as shown in the Fig. 1. In the remainder of theNote,
the following numerical values have been used: m1 � 100 kg,
m2�400kg, k1�m1�2πf1�2�2.46MN=m, and k2�m2�2πf2�2�
3.55MN=m. The masses of the sensors and the actuator are
considered as negligible in comparison to the mass of the equipment.
The equations governing the system dynamics are given by

m1 �x1 � c1 _x1 � k1x1 � Fa � c1 _x0 � k1x0

� c2� _x2 − _x1� � k2�x2 − x1� (1)

m2 �x2 � c2� _x2 − _x1� � k2�x2 − x1� � 0 (2)

The output of the force sensor can be expressed as

Fs � −k1�x1 − x0� − c1� _x1 − _x0� � Fa (3)

and the control force is

Fa � H�s�Fs (4)

For the sake of simplicity, the damping c is considered as negligible,
and consequently omitted in the following. In the next section, the IFF
is briefly reviewed, along with some of its intrinsic characteristics.

III. Integral Force Feedback

The simplest form of the IFF consists of driving the actuator with a
signal that is proportional to the integral of the force measured by the
transducer located in series with the actuator, i.e., [8]
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H�s� � g

s
(5)

As the force measured is proportional to the acceleration, the
control force will be proportional to the velocity and add viscous
damping to the structure. Typically, the resulting open-loop transfer
function shows alternating poles ωi and zeros zi along the imaginary
axis, plus one pole at s � 0 that corresponds to the controller. Apply-
ing control law (5) to the system described in Sec. II, one obtains the
root locus shown in Fig. 2b (dotted line).
It shows two loops. The lowest one corresponds to the suspension

mode (the two masses bounce in phase on the suspension stiffness).
The highest one corresponds to the flexible mode (the two masses
oscillate out of phase). From the figure, one sees that the suspension
mode can be arbitrarily damped by the actuator. However, the flexible
mode can be damped to amaximumvalue. Actually, inmodal coordi-
nates, and provided that the resonance modes are sufficiently well
separated, the characteristic equation can be transformed into a
system of uncoupled equations of the form

1� g
s2 � z2i
s2 � ω2

i

� 0 (6)

Under these assumptions, it can be shown [12] that the maximum
achievable modal damping of mode i is

ξ� � ωi − zi
2zi

(7)

and that it is obtained for the following value of the gain:

g� � ωi

�����
ωi

zi

r
(8)

In other words, the IFF will strongly damp frequencymodes when
poles and zeros arewell separated, usually at low frequency. In [13], it
has been proposed to increase the damping performance by introduc-
ing a feedthrough component in the controller, which moves the
open-loop zero of the target mode away from the pole. However, this
method requires a very good separation of the flexible modes. In the
following section, we will present another method, where the active
damping of a target mode is enhanced through an intentional interac-
tion between the controller and the structure.

IV. Alpha Control

Consider the following controller:

H�s� � g
s� α

s2
(9)

where α is a parameter. Compared to Eq. (5), a new pair of pole/zero
has been introduced. The new pole is located at s � 0, whereas
the zero is located at s � −α. For jω > α, the controller is essentially
an integrator, as in Eq. (5) of the previous section. For jω < α, the
controller is a double integrator, which tends to cancel the force
applied by the suspension of the equipment. When the value of α is
small compared to the frequency of the flexible modes, the optimal
modal damping remains given by Eq. (7). This case is illustrated in
Fig. 2a. However, as the value of α becomes comparable to the value
of the first flexible mode, the controller poles start to rapidly interfere
with the structural resonances for increasing values of the controller
gain. As a consequence, the achievable maximum modal damping is
significantly larger.
Considering that α is close to the frequency of mode i, the poles of

the closed-loop transfer function can be considered as solutions of the
characteristic equation:

Fig. 1 Two-degree-of-freedom system representing a flexible structure
controlled by an active mount.

α α

α

α α

αα

a)

b)

c)

Fig. 2 Root locus with the controller [Eq. (9)] and a) α < α�, b) α � α�
compared to the IFF (dotted line), and c) α > α�.
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1� g
s� α

s2
�s2 � z2i �s2

�s2 � ω2
i ��s2 � ω2

i−1�
(10)

where ωi and ωi−1 are the frequencies of the target modes, and zi is
the zero that lays in betweenωi andωi−1. The optimal value of αmay
be considered as the value for which the closed-loop poles are equally
damped. By imposing such a condition, the solution of Eq. (10) leads
to a modal damping of

ξ� �
������������������������������������������������������������
�ω2

i � ω2
i−1�z2i − ω2

iω
2
i−1 − z4i

p
2z4i

(11)

which is obtained for the following value of α:

α� � z4i − ω2
iω

2
i−1

gz2i
(12)

and a controller gain of g� � 4ξ�zi. The corresponding frequency of
the closed-loop pole is simply given by

ω� � zi (13)

The root locus obtained with Eqs. (11) to (13) is shown in Fig. 2b.
One clearly sees that, at the optimal gain, the branches of the root
locus intersect, whichmeans that the two pairs of poles have the same
frequency and same damping value. The magnitude of the transmis-
sibility between the ground x0 and the equipment x1 for the system
described in Sec. II is shown in Fig. 3, when the controller is turned
off (black dotted line) or turned on with the IFF (solid line) using the
optimal gain [Eq. (8)] and the new controller (dashed line), using the
optimal parameters shown in Eqs. (11–13).
Themagnitude at the frequency of the flexible mode is roughly the

same for both controllers. However, for the suspension mode, the
closed-loop transmissibility obtained with the new controller is more
than 20 dB lower than with the IFF.
As amatter of fact, both the IFF and the proposed controller induce

a degradation of the compliance at low frequency. Using Eqs. (5) or
(9) in Eqs. (1–4), it can be easily shown that, for large values of the
gain, the stiffness sensed by the force transducerwill not contribute to
the stiffnessmatrix anymore. In the example shown in Fig. 1, itmeans
that the two masses will be floating in the inertial space.
Figure 4 shows the open-loop transfer function between the actu-

ator and the sensor using the proposed control law. It shows that the
gain margins are infinite due to the alternating of poles and zeros
along the imaginary axis. This pattern proves that the closed-loop
system is unconditionally stable [12].

V. Compliance Control

To recover the compliance at low frequency, several high-pass
filters have been studied in the literature. In [14], it has been proposed
to introduce a pair of complex conjugate poles. In [11,15], it has been
proposed to use a double real pole located at s � −β and a zero
at s � 0.
Applying this method to the proposed controller, Eq. (9) becomes

H�s� � g
�s� α�
�s� β�2 (14)

and the characteristic equation can be expressed as

1� g
�s� α�
�s� β�2

�s2 � z2i �s2
�s2 � ω2

i ��s2 � ω2
i−1�

(15)

It can be noticed that, for α � 0, Eq. (14) corresponds to the beta
controller described in [15]. A numerical analysis of Eq. (15) reveals
that optimal values of the parameters exist. However, the analytical
expressions of the optimal parameters, for an arbitrary value of i, have
not been found.
Nevertheless, as this section focuses on recovering the compliance

at low frequency (i.e., for frequencies lower than the first resonance of
the system), we consider the case i � 1. In particular, for i � 1,
characteristic equation (15) becomes

1� g
�s� α�
�s� β�2

�s2 � z21�
�s2 � ω2

1�
(16)

where ω1 is the first pole, z1 is the first zero, and ωi−1 � 0. The
solution of the equation has three pairs of complex conjugate poles.
Again, changing the position of the zero at s � −α creates an
interaction between the poles of the structure and the poles of the
controller. The development of Eq. (16) leads to

s4 � �2β� g�s3 � �ω2
1 � β2 � gα�s2 � �2βω2

1 � gz21�s
� β2ω2

1 � gαz21� � 0 (17)

The optimal damping of the flexible mode is reached when the
characteristic equation has four conjugated roots, in which case it can
be written in the form

�s2 � 2ωaξas� ω2
a��s2 � 2ωbξbs� ω2

b� � 0 (18)

At the crossing points of the loops, the four roots can be reduced to
two conjugated roots, and therefore have the form

Fig. 3 Transmissibility x1∕x0 without control (dotted line), with the
controller [Eq. (5)], and with the controller [Eq. (9)].

Fig. 4 Open-loop transfer function.
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�s2 � 2ωξs� ω2�2 � 0 (19)

or

s4 � 4ωξs3 � �4ω2ξ2 � 2ω2�s2 � 4ω3ξs� ω4 � 0 (20)

Identifying Eqs. (17) and (20), we get a set of four equations
containing four variables (α, g, ξ, ω):

2β� g � 4ωξ (21)

ω2
1 � β2 � gα � 4ω2ξ2 � 2ω2 (22)

2βω2
1 � gz21 � 4ω3ξ (23)

β2ω2
1 � gαz21 � ω4 (24)

The solutionwas computedwith the help of a symbolic calculation
software, leading to

ω� �
����������������������������������
z21 � β

����������������
ω2
1 − z21

qr
(25)

ξ� � 1

2

����������������
ω2
1 − z21

p
����������������������������������
z21 � β

����������������
ω2
1 − z21

pq (26)

g� � 2

����������������
ω2
1 − z21

q
− 2β (27)

α� � 1

2

z21 � 2β
����������������
ω2
1 − z21

p
− β2����������������

ω2
1 − z21

p
− β

(28)

The root locus is shown in Fig. 5 using the optimal value of the
parameters (dashed line), and it is comparedwith controller described
in [15], obtained by taking α � 0 in Eq. (14) (dotted line). One sees
that, with the optimal value ofα, the damping of the flexiblemode has
been increased by a factor three (ξ � 0.33) compared to ξ � 0.1
when α � 0.
Moreover, in Fig. 5b, one sees that the small loop introduced by the

controller when α � 0 does not enter in the right half-plane anymore
for the optimal value of α. Using the Routh criteria of stability, it has
been found that the condition on α for closed stability is

α ≥ β∕2 (29)

This condition is always fulfilled when taking the optimal value
of α.

VI. Conclusions

The active damping of flexible structures with collocated force
sensor/actuator pairs have been reviewed in this Note. In the first part
of the Note, two limitations of the integral force feedback (IFF) have
been discussed, which are the limited damping of flexible modes and
the loss of compliance. By slightly modifying the controller, it has
been shown that the active damping of a target mode can be
significantly increased. Analytical formulas of the optimal para-
meters have been derived. In the second part, the loss of compliance
inherent to IFF has been addressed. It has been shown that, when a
high-pass filter is inserted into the IFF controller, the compliance at
low frequency can be recovered but the unconditional stability is lost.
On the other side, with the new proposed control law, the stability is
always guaranteed even when using a high-pass filter. These
promising results will be extended to decentralized multiple inputs
multiple outputs (MIMO) systems in a future work, on the ground of
previous studies on MIMO systems, e.g., [10].
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