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feedback controller
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Abstract

This paper studies the performance of the classical integral force feedback (IFF) controller for suppressing the forced

response of a single degree of freedom (SDOF) system. An H1 optimization criterion is used to derive the optimal

feedback gain of the IFF controller contributed as a complement for the state of the art. This optimal gain is calculated in

the closed-form based on a SDOF system which is then applied to a two degrees of freedom system to study its

adaptability. It is found that the H1 optimal gain can be easily transposed into multi-degrees of freedom applications

without introducing too many errors. An equivalent mechanical model is also developed to enable a straightforward

interpretation of the physics behind the IFF controller.
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1. Introduction

In order to meet the increasing demand for fuel effi-
ciency, lightweight materials are more and more con-
sidered in the construction of system structures
especially in the fields of aerospace engineering,
robotics, and vehicle applications (Cole and Sherman,
1995; Wang and Gao, 2003; Darecki et al., 2011).
However, vibrations within these systems are often
lightly damped, which may easily become a major
factor limiting their performance. During the past few
decades, the potential of using active damping systems
(Preumont, 2011) has thus been extensively explored,
where additional actuators and sensors are employed
and the resultant control force is formed to be propor-
tional to the structure velocity in order to increase the
structural damping. A wide range of control techniques
such as integral force feedback (IFF) (Preumont et al.,
1992, 2016), direct velocity feedback (Balas, 1979;
Alujević et al., 2014), and positive position feedback
(Fanson and Caughey, 1990) have been proposed to
implement such active damping systems. One
common feature of these active damping controllers is
that they are relatively easy to implement, where not
much prior knowledge of the system is required.
However, it should be stressed that these controllers
are only effective around the resonances in contrast
with model-based controllers such as linear–quadratic

regulator (Borrelli and Keviczky, 2008), LMI (Chilali
and Gahinet, 1996), or inverse dynamics based control-
lers (Wang and Xie, 2009), which may exhibit higher
performance but the stability is not absolutely
guaranteed.

On the other hand, it was demonstrated in Preumont
et al. (1992) that active damping systems can be made
unconditionally stable using IFF controllers for the
collocated actuator–sensor configuration given that
the time delay or the hysteresis of the actuator is neg-
ligible. One important design concern with such a con-
trol system is how the control gain of the feedback loop
should be set to optimally damp the vibration of the
host structure. The most widely used optimization cri-
terion for designing an IFF controller was proposed in
Preumont et al. (2016), which is referred to as the max-
imum damping criterion. With this technique, the
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optimal feedback gain is sought to obtain the most
achievable damping for one specified structural mode.
In this context, the damping is mainly introduced to
reduce the setting time of the transient response to
impulsive disturbances. Similarly, the function of
damping can be also interpreted to reduce the ampli-
tude of the forced response in the vicinity of the
resonances.

This work builds upon the IFF control strategy and
proposes a new optimal tuning law based on the H1
optimization criterion. Accordingly, the optimal gain is
set to minimize the maximum steady state response of
the structure. The presented optimal tuning law is pre-
ferred when the system is being continuously disturbed,
for example, in the applications of the facilities dedi-
cated to experimental physics (Meimon et al., 2010;
Collette et al., 2013; Sivo et al., 2014). The optimal
feedback gain under the H1 optimization criterion is
firstly derived in a closed-form formulation for a single
degree of freedom (SDOF) system and then for a two
Degrees of freedom (TDOF) system. In this way, the
performance degradation of applying the optimal
tuning law derived for the SDOF system to the
TDOF system is investigated. It is found that the H1
optimal gain derived with the SDOF system can be
easily transposed into a TDOF system application
using only the modal information without introducing
too many errors.

The paper is structured into four sections: in
Section 2, a SDOF system is presented, based on
which the H1 optimal feedback gain is derived;
Section 3 investigates the relative errors due to the
approximations when applying the optimal feedback
gain derived in Section 2 into a TDOF system; and
Section 4 draws the conclusions.

2. Mathematical model and 1
optimization

The system under investigation is shown in Figure 1(a).
The structure is modeled as an undamped, lumped par-
ameter SDOF system, defined through the mass m1 and
the stiffness k1. It is excited by a disturbance force F.
A force actuator with its stiffness of ka is placed in
parallel to the passive mount and a force sensor is
mounted between the actuator and the structure to cap-
ture the force delivered by the actuator to the mass. The
control loop is implemented by feeding the integral of
the force sensor output denoted by Fs with a negative
amplification gain back to drive the actuator which
generates the control force Fa ¼ �g

R t
0 Fsdt.

The governing equations of the system read

m1 €xþ k1x ¼ Fþ Fs ð1Þ

Fs ¼ �g

Z t

0

Fsdt� kax ð2Þ

where g is the feedback gain.
Transforming equations (1) and (2) to the Laplace

domain, the driving point receptance of the system can
be derived

x

F
¼

gþ s

m1s3 þ gm1s2 þ k1 þ kað Þsþ gk1
ð3Þ

where s is Laplace variable.
The magnitude of the frequency response of the driv-

ing point receptance is taken as the performance index
and it is given by

x

F

��� ��� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ !2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1!
6 þm1 g2m1 � 2k1 � 2ka

� �
!4

þ k21 þ �2g
2m1 þ 2ka

� �
k1 þ k2a

� �
!2 þ g2k21

s

ð4Þ

where ! is circular frequency.
In order to obtain a straightforward interpretation

of the physics behind the IFF, an equivalent mechan-
ical model is developed with an identical dynamical
behavior as the system shown in Figure 1 (a). This
mechanical model is depicted in Figure 1(b); the effect-
iveness of applying IFF is equivalent to having a
dashpot in series with the actuator spring. This damp-
ing coefficient is feedback gain dependent which is
given by

da ¼
ka
g

ð5Þ

In the case where g ¼ 0 (corresponding to no con-
trol), there is no relative displacement over da such that
ka represents the whole actuator branch. On the other
hand when g ¼ 1, the branch which contains da breaks
such that no transmission force passes this branch and
the whole actuator effect disappears resulting in the
softening effect of using IFF. The equivalent mechan-
ical model as shown in Figure 1 (b) is actually known as
a relaxation damper (Marneffe et al., 2009). One inter-
esting point of a relaxation damper, is that all the driv-
ing point receptances with different damping to stiffness
ratios will cross each other at a fixed point.
Analogically to the fixed- point theory proposed in
Den Hartog (1985) to design a tuned mass damper
(TMD), it is natural to consider that the optimal damp-
ing to stiffness ratio of the relaxation damper is
achieved when the response at the fixed point corres-
ponds to the maximum of the driving point receptance.
This process is actually called H1 optimization.
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In the following part of this section, the optimal gain
of the IFF controllers is derived in the closed-form
under H1 criterion. Equation (4) is taken as the per-
formance index. The optimal value of g to minimize the
maximum of the performance index is derived by sol-
ving the following equations for g and !

@ x
F

�� ��
@g
¼ 0 ð6Þ

@ x
F

�� ��
@!
¼ 0 ð7Þ

or:

gka!
2 �2m1!

2 þ 2k1 þ ka
� �

¼ 0 ð8Þ

�m2
1!

6 � 2m1 g2m1 �
k1 þ ka

2

� �
!4

� g2m1 g2m1 � 2 k1 þ kað Þ
� �

!2

þ g2 g2k1m1 � k1 þ
ka
2

� �
ka

� �
¼ 0

ð9Þ

Then the optimal feedback gain gopt and the fixed
point !fixed are calculated as

gopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2
o þ�2

0

2

r
ð10Þ

!fixed ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2
o þ�2

0

2

r
ð11Þ

where !0 ¼

ffiffiffiffiffi
k1
m1

q
and �0 ¼

ffiffiffiffiffiffiffiffiffiffi
k1þka
m1

q
are the resonance fre-

quencies of the system when the feedback gain is set to
1 and 0, respectively. In other words, !0 and �0

correspond to the resonance frequency of the system
when the force sensor is removed and installed,
respectively.

It should be noted that the optimal gain as given in
equation (10) is derived provided that the primary

structure is undamped. Therefore, it might not be
applicable if this assumption does not hold. However,
it is foreseen that the derived tuning could still guaran-
tee an adequate approximation to the actual optimal
value if the primary structure is lightly damped.
In practice, the determination of the optimal gain for
a damped primary structure can be achieved by an
iterative procedure, and the derived optimal tuning cor-
responding to the undamped primary structure could
be considered as a good first guess.

It is also noted that the derived !fixed as given by
equation (11) is taken as the quadratic mean of the
two resonance frequencies. At this particular frequency,
the performance index is not invariant of the feedback
gain g. The optimal gain gopt is thus set to maximize the
index at the fixed-point frequency, so that the response
at this point becomes the maximum. In other words,
the maximum performance index is minimized with the
optimal feedback gain.

The effect of using IFF control is illustrated on an
example system where the mass m1 is set to 1 kg, the
stiffness k1 ¼ 400�2N/m and the actuator stiffness
ka ¼ 200�2N/m. Figure 2 shows the performance
index plotted against frequency which is normalized
to the fixed-point frequency as given in equation (11)
for five different gain ratios defined as g=gopt: 0, 1/4, 1,
4, and 1. It is shown that all the curves intersect at a
fixed point which corresponds to !fixed and only with
the optimal feedback gain gopt the response at the fixed
point becomes the maximum in the whole frequency
range. The original undamped system with no control
(g¼ 0) becomes undamped again when the control gain
is set to infinity.

In addition, one should also notice that the system
becomes dynamically softer with the application of IFF
control, meaning that the actuator does not contribute
to the static stiffness of the system when the control
gain is set to the values other than zero. Marneffe
(2007) and Preumont et al. (2016) reported to use a
high pass filter to compensate the static stiffness,
which however would result in the invalidity of the

Figure 1. (a) scheme of the system under investigation; and (b) mechanical replacement model.
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derived optimal feedback gain and the compromise of
the unconditional stability. Further investigations will
be a subject of future work.

It is also interesting to investigate the dependence of
the minimal maximum of the performance index, which
can be done by substituting equation (10) into equation
(4), yielding to

x

F

��� ���
max
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1

�2
0
�!2

0

2

� 	2r ¼
2

ka
ð12Þ

The expression as given in equation (12) is of particu-
lar interest as it is directly shown that this minimal max-
imum is inversely proportional to only one parameter,
that is, the stiffness of the actuator ka. This is because the
optimal value of the performance index is determined by
the product of the mass of the primary structure and the
difference of the two resonance frequencies, thereby the
parameters associated with the primary structure, that is,
the mass m1 and the stiffness k1 do not play a role in
determining the optimal value of the performance index.
Therefore, a stiffer actuator should be chosen in the
design phase in order to enhance the control perform-
ance. However, it should be argued that much more
force will be then transmitted through the actuator
which might be not favored in practice because of the
potential failure problem.

In the following, the difference of the optimal gains
derived from the H1 criterion and the maximum
damping criterion are studied. The optimal gain for
achieving the maximum damping is given as
(Preumont et al., 2016)

gdopt ¼ �i

ffiffiffiffiffi
�i

!i

r
ð13Þ

where !i and �i correspond to the resonance frequency
associated with the ith mode of the system when the
force sensor is removed and installed, respectively.

Figure 3 plots the ratio of the optimal feedback gain
derived from the H1 optimal method and that from
maximum damping against the stiffness ratio between
the actuator and the primary structure. It can be seen
that the difference between the two optimal gains
increases with the stiffness ratio. The resultant control
performance associated with the two optimal settings is
also studied. Two stiffness ratios ka=k1 ¼ 0:1 and
ka=k1 ¼ 1 are considered. The corresponding optimal
control gain is calculated as given in equation (10)
and equation (13), respectively. Figure 4 (a) plots the
performance index for the H1 optimization criterion,
that is, steady state response of the driving point recep-
tance, and Figure 4 (b) depicts the performance index
for the maximum damping criterion, that is, settling
time of the transient response of the primary structure
to impulse disturbances. As can be seen, there is almost
no difference between the two optimal tuning methods
when the stiffness ratio is set to 0.1. On other hand, a
visible difference in terms of the steady state response
and the setting time is observed when the stiffness ratio
is equal to unity. This is because when the stiffness ratio
is small, the control authority with IFF is low such that
the optimal gains derived from different optimal meth-
ods are similar; while when the ratio is large, different
optimal gains will be set to satisfy different criteria, and
the difference between the optimal gains derived from
the H1 criterion and the maximum damping criterion
is more pronounced.

3. Robustness of the optimal tuning law

In Section 2, the optimal feedback gain as given in
equation (10) is derived for a SDOF, which can be
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also directly applied to multi-degrees of freedom (multi-
DOF) systems with well separated modes in a manner
analogous to classical TMDs (Den Hartog, 1985) or
piezoelectric shunts (Hagood and von Flotow, 1991;
Zhao et al., 2015). For example, this can be done by
performing a modal analysis of the system to calculate
the natural frequencies of each mode when the actuator
is installed and removed, respectively. The correspond-
ing values are then substituted into equation (10) to
obtain the optimal gain for each individual mode.
However, it is not clear whether equation (10) is still
valid for multi-DOF systems with closely located
modes.

A TDOF undamped system as depicted in Figure 5
is thus employed to study the adaptability of the opti-
mal gain given in equation (10). The additional mass-
spring pair m2 and k2 acts as a vibration neutralizer and
its resonance frequency in this study is set to the reson-
ance of the lower mass-springs pair m1 and k1 þ ka,
whereby the distance between the two modes of the
system is mainly determined by the mass ratio between
m2 and m1. In the following, the exact optimal gain for
each vibration mode will be firstly derived and the
resulting performance will be compared to that with
the estimated optimal gains derived in equation (10).

The governing equations of the system read

m1 €x1 þ k1x1 þ k2 x1 � x2ð Þ ¼ F þ Fs ð14Þ

m2 €x2 � k2ðx1 � x2Þ ¼ 0 ð15Þ

Fs ¼ �g

Z t

0

Fsdt�kax1 ð16Þ

Transforming equations (14), (15), and (16) to a
Laplace domain the driving point receptance of the
system can be derived

x1
F
¼

m2s
2 þ k2

� �
sþ gð Þ

m1s
2 þ k1

� �
sþ gð Þ m2s

2 þ k2
� �

þ k2m2s
2 sþ gð Þ þ ka m2s

2 þ k2
� �

( ) ð17Þ

where s is Laplace variable.
The magnitude of the frequency response of the driv-

ing point receptance as given in equation (17) is taken
as the performance index and it is given by

0.1 1 5
/

fixed

-100

-90

-80

-70

-60

-50

|x
/F

|: 
dB

 r
e.

 [
1m

/1
N

]

0 0.2 0.4 0.6 0.8 1
Time [sec.]

-0.01

0

0.01

A
m

pl
itu

de
 (

m
)

Ratio = 0.1, g = g
opt Ratio = 0.1, g = gd

opt
Ratio = 1, g = g

opt Ratio = 1, g = gd
opt

(a) (b)

Figure 4. (a) magnitude of the driving point receptance plotted against the normalized frequency for two optimal tunings when the

stiffness ratio is set to 0.1 and 1, respectively; and (b) impulse response of the system when the optimal settings are applied.

Figure 5. The scheme of two degrees of freedom system with

integral force feedback control.
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x1
F

��� ��� ¼ �m2!
2 þ k2

�� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ !2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2!

4 þ k2k1þ
�m1 �m2ð Þk2 � k1m2ð Þ!2

� �2

g2 þ
m1m2!

4 þ k2 k1 þ kað Þþ

�m1 �m2ð Þk2 �m2 k1 þ kað Þð Þ!2

� �2

!2

s ð18Þ

where ! is circular frequency.
In a manner analogous to the fixed point theory (Den Hartog, 1985), two fixed points (except for the anti-

resonance) would exist for a system as described in equation (18), meaning that the magnitude of the frequency
response of the driving point receptance as given in equation (18) with different feedback gains will intersect at two
invariable frequency locations. The frequencies at which the fixed points occur can be calculated by differentiating
equation (18) with respect to the feedback gain g, and equating the derivative to zero, yields

!fix1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 k1 þ k2 þ 1=2kað Þ

2m2
2 þ 4k22m

2
1

�8k2 k1 � k2 þ 1=2kað Þm1m2

s
þ 2k1 þ 2k2 þ kað Þm2 þ 2k2m1

vuut
2
ffiffiffiffiffiffi
m1
p ffiffiffiffiffiffi

m2
p ð19Þ

!fix2 ¼


4 k1 þ k2 þ 1=2kað Þ

2m2
2 þ 4k22m

2
1

�8k2 k1 � k2 þ 1=2kað Þm1m2

s
þ 2k1 þ 2k2 þ kað Þm2 þ 2k2m1

vuut
2
ffiffiffiffiffiffi
m1
p ffiffiffiffiffiffi

m2
p ð20Þ

Substituting equation (19) and equation (20) into the partial derivative of equation (18) with respect to ! as
@ x1

F

�� ��=@! respectively and solving the resulting equations for the feedback gain g, the exact optimal gain for each
mode can be then derived as

gexa1 ¼


2

16P4m2
2 � 32P2m1k2Qm2

þ16m2
1k

2
2 k22 þ k1 þ 1=2kað Þ

2
� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2m2
2 � 2m1k2Qm2 þm2

1k
2
2

q
�32 P2m2 �m1k2Q

� �
P P2m2

2 � 2m1k2Qm2 þm2
1k

2
2

� �
vuuut

2m1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 4P2m2

2 � 8m1k2 k1 þ 1=2kað Þm2 þ 4m2
1k

2
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2m2

2 � 2m1k2Qm2 þm2
1k

2
2

q
�8 Pm2 �m1k2ð Þ P2m2

2 � 2m1k2Qm2 þm2
1k

2
2

� �
vuut

vuuuuuuuuuut
ð21Þ

gexa2 ¼


2

16P4m2
2 � 32P2m1k2Qm2þ

þ16m2
1k

2
2 k22 þ k1 þ 1=2kað Þ

2
� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2m2
2 � 2m1k2Qm2 þm2

1k
2
2

q
þ32 P2m2 �m1k2Q

� �
k1 þ k2 þ 1=2kað Þ P2m2

2 � 2m1k2Qm2 þm2
1k

2
2

� �
vuuut

2m1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 4P2m2

2 � 8m1k2 k1 þ 1=2kað Þm2 þ 4m2
1k

2
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2m2

2 � 2m1k2Qm2 þm2
1k

2
2

q
þ8 Pm2 �m1k2ð Þ P2m2

2 � 2m1k2Qm2 þm2
1k

2
2

� �
vuut

vuuuuuuuuuut
ð22Þ

where P ¼ k1 þ k2 þ
1
2 ka and Q ¼ k1 � k2 þ

1
2 ka.

Applying the optimal tuning law derived in Section 2 for the SDOF system to the TDOF system under con-
sideration, the estimated optimal gain for the ith mode (i 2 1, 2½ �) is given as

gesti ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2
0i þ�2

0i

2

r
ð23Þ

where !0i, �0i (i 2 1, 2½ �) represents the resonance frequency of the ith mode of the system when the force sensor is
removed and installed respectively and they are given by

!01 ¼

ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The control effectiveness with the exact gains as
given in equations (21)–(22) and the estimated gains
in equation (23) are compared for two cases: (1) the
well separated modes case where the mass ratio
m2=m1 is set to 0.5 and the stiffness k2 is set according
to k2 ¼ k1 þ kað Þm2=m1; and (2) the closely located
modes case where the mass ratio m2=m1 is 0.001 and
the stiffness k2 is adapting the same accordingly. The
other parameters m1, k1 and ka remain the same as
defined in Figure 1(a).

Figure 6 compares the resulting driving point recep-
tance with six different gains, g ¼ 0,1, gest1, gexa1, gest2
and gexa2 for the well separated modes case, while
Figure 7 shows the comparison for the closely located
modes case. In both cases, the response at the
undamped resonances is substantially suppressed and
the local minimal maxima for the first and second
modes are obtained when the feedback gain is set to
the exact optimal parameter as given in equation (21)
and equation (22), respectively. One can also see that
the resultant performance index difference associated
with the exact parameters and the estimated parameters
is almost negligible as the corresponding curves tar-
geted for the same mode almost coincide with each
other. The obtained results indicate that the derived
optimal feedback gain underH1 optimization remains,
to a very large extent, an accurate estimation of the
exact values even when the two modes are very close
to each other.

Next, the relative errors between the gain approxi-
mations and their exact counterparts in terms of the
mass ratio m2=m1 and the stiffness ratio ka=k1 are inves-
tigated. The mass ratio mainly determines the distance
between the two resonances and the stiffness ratio
mainly determines the IFF control performance.

Figure 8 (a) and Figure 8 (b) plot the relative feed-
back gain errors between the exact optimal values and
the estimated values against the mass ratio and the
stiffness ratio targeted for the first and the second

modes, respectively. It can be shown that an increase
of the relative gain errors introduced by the approxi-
mations comes with an increase in the stiffness ratio.
However, the relative gain errors do not change pro-
portionally with respect to the mass ratio, and instead
there is a mass ratio near which the relative errors are
maximized. Nevertheless, the relative gain errors intro-
duced by the approximations are below 6% up to the
frequency ratios from 10% to 1000%, and the mass
ratio is from 0.1% to 100%.

Figure 9 (a) and Figure 9 (b) plot the relative result-
ant performance index errors associated with the exact
optimal values and the estimated values against the
mass ratio and the stiffness ratio targeted for the first
and the second modes, respectively. One can see that
the relative resultant performance errors introduced by
the approximations are smaller than that of the relative
gain errors, which is below 0.6% for the first mode and
0.03% for the second mode. The results shown by the
plots indicate that the approximation as given in equa-
tion (23) is reasonable to be used to represent its exact
solution in a relatively large range.

On the other hand, the IFF control performance for
the TDOF system under the optimal feedback gains
derived by the maximum damping criterion
(Preumont et al., 2016) is also compared for the two
cases. For each mode, the optimal gain for achieving
the maximum damping of mode i (i 2 1, 2½ �) can be
estimated as (Preumont et al., 2016)

g�esti ¼ �0i

ffiffiffiffiffiffiffi
�0i

!0i

r
ð28Þ

Figure 10 (a) compares the resultant root loci with
the estimated optimal parameter for each mode in the
case where the two modes are well separated, while
Figure 10 (b) shows the comparison for the closely
located modes case. It is shown in Figure 10 (a) that
the achieved damping value with the estimated optimal
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Figure 8. The relative errors of the feedback gains for: (a) first mode; and (b) second mode.
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parameter for each mode is very well graphically
approaching to the corresponding maximum achieved
damping, meaning that the estimated optimal param-
eter is a reasonable approximation to its exact value
when the modal modes are well separated. However,
on the contrary, there is a relatively large error for
the optimal gain approximation for the second mode
in terms of the resultant achieved damping for the case
when the modes are closely located. This indicates that
the optimal parameter derived with the maximum
damping criterion may suffer from the restriction of
the location of the poles of the system.

4. Conclusions

This paper studies the performance of the classical IFF
controller for suppressing the forced response of a
SDOF system. The H1 optimization criterion is used
to derive the optimal feedback gain of the IFF

controller contributed as a complement for the state
of the art. This optimal gain is calculated in the
closed-form based on a SDOF system which is then
applied to a TDOF system to study its adaptability.
It is found that the H1 optimal gain can be easily
transposed into m-DOF applications without introdu-
cing too many errors. An equivalent mechanical model
is also developed to enable a straightforward interpret-
ation of the physics behind the IFF controller.
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