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Referencing

Most of the work presented in this seminar was done with the help of documentations 
and models done by Thomas Dehaeze. 

Here is a link to this documentation: 

• For Documentation: https://research.tdehaeze.xyz/svd-control/
• Matlab codes and simscape model: https://git.tdehaeze.xyz/tdehaeze/svd-control

https://research.tdehaeze.xyz/svd-control/
https://git.tdehaeze.xyz/tdehaeze/svd-control
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Why decouple ?
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Why decouple ?

Model of Gravimeter

Considered Plant:
• 3 Actuators
• 4 sensors(accelerometers)

F1 F2 F3

A1x

A1y

A2x

A2y

Open Loop Transfer Functions from different Actuators to different sensors  

Open Loop transfer matrix of a coupled system:
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Why decouple ?

Model of Gravimeter

Considered Plant:
• 3 Actuators
• 4 sensors(accelerometers)

Treat the transfer function as a SISO TF and actively 
controlling it, good controller with good stability margins

Transfer Function from Actuator F3 to sensor A2y
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Why decouple ?

Model of Gravimeter

Considered Plant:
• 3 Actuators
• 4 sensors(accelerometers)

Other TF in the MIMO 
system is degraded after 
closing the controller loop 

Coupling
SISO approaches not 
easily applicable in 
coupled systems

Transfer Function from Actuator F2 to sensor A1x

Risk of Instability !!
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Why decouple ?

𝐹 = 𝐻 ∗ 𝑥 Where:

• SISO control approaches could be applied.

• Easy to control independently the degrees of 
freedom.

• Certain knowledge of the plant is required (kind of 
knowledge depends on decoupling strategy).

Control matrix

Ts: sensor transformation matrix

Ta: actuator transformation matrix

Centralized Control:

Actuation Vector in 
decoupled frame

𝐹 =
𝐹1
⋮
𝐹𝑛

Output Vector in 
decoupled frame

𝑥 =
𝑥1
⋮
𝑥𝑛

𝐻1

𝐻𝑛

⋱

⋱

⋱

⋱

Coupled plant
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Singular Value Decomposition 
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II. Singular Value Decomposition 

𝐴 = 𝑈𝛴𝑉𝑇

Where : 
• A is an 𝑚𝑥𝑛 rectangular matrix 
• U is an 𝑚𝑥𝑚 orthogonal matrix, 𝑈𝑇𝑈 = 𝐼.
• V is an 𝑛𝑥𝑛 orthogonal matrix , 𝑉𝑇𝑉 = 𝐼
• 𝛴 is an 𝑚𝑥𝑛 pseudo-diagonal matrix where first 𝑟 elements on the diagonal are the singular values of 𝐴, 

which we denote as 𝛴𝑖𝑖 = 𝜎𝑖 of 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟 > 0, and all other elements of 𝛴 equal to zero

𝐴11 ⋯ 𝐴1𝑛
⋮ ⋱ ⋮

𝐴𝑚1 ⋯ 𝐴𝑚𝑛

= 
𝑈11 ⋯ 𝑈1𝑚
⋮ ⋱ ⋮

𝑈𝑚1 ⋯ 𝑈𝑚𝑚

𝜎1 ⋯ 0 0 ⋯ 01𝑛
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋯ 𝜎𝑟 0 ⋯ 0
0 ⋯ 0 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0𝑚1 ⋯ 0 0 ⋯ 0𝑚𝑛

𝑉11 ⋯ 𝑉1𝑛
⋮ ⋱ ⋮

𝑉𝑛1 ⋯ 𝑉𝑛𝑛

𝑇

𝐴 𝑈 𝑉𝑇𝛴

Coupled Plant Transform matrix Transform matrixDecoupled Plant

https://www.youtube.com/watch?v=nbBvuuNVfcoInteresting to check:

https://www.youtube.com/watch?v=nbBvuuNVfco
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II. Singular Value Decomposition 

Model of Gravimeter

According to the SVD formula, the decoupled plant should be  : 𝐺𝑠𝑣𝑑 = 𝑈−1𝐺 𝑠 𝑉−𝑇

However, since G is frequency dependent,  U and V can’t 
decouple the system over all frequency bandwidth.

Choose a frequency for decoupling (preferably crossover frequency)

Get real approximation of the transfer matrix G at this frequency 

Get U and V matrices that decouple plant G at the chosen frequency neighborhood

𝐺

𝑓 =

𝐹1
𝐹2
𝐹3

A=

𝑎1𝑥
𝑎1𝑦
𝑎2𝑥
𝑎2𝑦

Decentralized Scheme

𝛴 𝐴
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Model of GravimeterSimscape model

Plant Modelling using Matlab and Simscape:

Parameter definition :

System identification :

II. Singular Value Decomposition 
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II. Singular Value Decomposition 

SVD decoupling using Matlab :

Evaluating transfer matrix values at frequency of 10Hz: 

Real approximation of the computed transfer matrix at 10Hz:

SVD decomposition performed using the following matlab command: 

U =

−0,78 0,26 −0,53 0,2
0,4 0,61 −0,04 −0,68
0,48 −0,14 −0,85 0,2
0,03 0,73 0,06 0,68

V =
−0,79 0,11 −0,6
0,51 0,67 −0,54
−0,35 0,73 0,59

Model of Gravimeter
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II. Singular Value Decomposition 

SVD centralized vs decentralized control schemes: 

𝐺𝑥

𝐺

𝑓 =
𝐹1
𝐹2
𝐹3

A=

𝑎1𝑥
𝑎1𝑦
𝑎2𝑥
𝑎2𝑦

Decentralized Scheme

𝑈−1𝐺

𝑈 =

𝑢1
𝑢2
𝑢3

𝑌 =

𝑦1
𝑦2
𝑦3

𝑓 =
𝐹1
𝐹2
𝐹3

Centralized Scheme

𝑉−𝑇

A=

𝑎1𝑥
𝑎1𝑦
𝑎2𝑥
𝑎2𝑦

𝐺𝑆𝑉𝐷
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SVD decoupling using Matlab:

Discarding 4th output (correspond to null singular value)

Decoupling could be bad in frequencies not falling 
in the neighborhood of the decoupling frequency

Best Decoupling Performance obtained 
at the frequency where the SVD 
decomposition was applied

Very effective decoupling on a specific frequency, 
but not necessarily over all the bandwidth 

Decoupled Plant can be obtained by:
𝑈−1𝐺

𝑈 =

𝑢1
𝑢2
𝑢3

𝑌 =

𝑦1
𝑦2
𝑦3

𝑓 =

𝐹1
𝐹2
𝐹3

Centralized Scheme

𝑉−𝑇

II. Singular Value Decomposition 

A=

𝑎1𝑥
𝑎1𝑦
𝑎2𝑥
𝑎2𝑦

𝐺𝑆𝑉𝐷

Open Loop Transfer Functions of the decoupled plant using SVD
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Jacobian decoupling
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III. Jacobian decoupling

Analytical calculation of the Jacobians: 

Model of Gravimeter

In cartesian coordinates:
𝑀 ሷ𝑥 + 𝐾𝑥 = 𝐹

Since at COM:
𝑀 = 𝑑𝑖𝑎𝑔(𝑚,𝑚, 𝐼𝜃)

𝐹 = 𝐵𝑓 Where: 𝑓 =
𝐹1
𝐹2
𝐹3

and 𝐹 =

𝐹𝑥
𝐹𝑦
𝑀θ

Consider J as Jacobian matrix from cartesian coordinates to the 
coordinates of the actuators/sensors:

𝑞 = 𝐽𝑥

According to principle of virtual work:

𝐹𝑇𝛿𝑥 = 𝑓𝑇𝛿𝑞= 𝑓𝑇𝐽𝛿𝑥 𝐹 = 𝐽𝑇𝑓 𝐵 = 𝐽𝑇
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III. Jacobian decoupling

Analytical calculation of the Jacobians: 

Actuator Jacobian:

Model of Gravimeter

𝑅 𝜃 =
cos(𝜃) sin(𝜃)
−sin(𝜃) cos(𝜃)

𝑞𝐹1 = (1 )0 ൤ 𝑥
𝑦

+ 𝑅(𝜃)
−
𝑙

2
−ℎ𝑎

൨−
−
𝑙

2
−ℎ𝑎

= x + 1 − cos θ
𝑙

2
− sin(θ)ℎ𝑎

𝑞𝐹2 = (0 )1 ቎
𝑥

𝑦
+ 𝑅(𝜃)

−𝑙𝑎

−
ℎ
2

቏−
−𝑙𝑎

−
ℎ
2

= y + 𝑙𝑎 sin 𝜃 +
ℎ

2
(1 − cos θ )

Relative displacements at actuator locations can be calculated as follows:  

𝑥𝑒 = 𝑥𝐶𝑀 + 𝑅 𝜃 𝑥𝑒0

Where :
• 𝑥𝑒 : position of an element in the Cartesian frame in the 

deformed configuration.
• 𝑥𝐶𝑀 : is the position of the center of mass in the Cartesian 

frame.
• 𝑥𝑒𝑜 : is the position of the considered element in the 

reference configuration.Relative displacement:
𝑞 = 𝑥𝑒 − 𝑥𝑒0

From rigid body dynamics:
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III. Jacobian decoupling

Analytical calculation of the Jacobians: 

Actuator Jacobian:

Model of Gravimeter

𝐽𝑎𝑐𝑡 =

𝜕𝑞𝐹1

𝜕𝑥

𝜕𝑞𝐹1

𝜕𝑦

𝜕𝑞𝐹1

𝜕θ

𝜕𝑞𝐹2

𝜕𝑥

𝜕𝑞𝐹2

𝜕𝑦

𝜕𝑞𝐹2

𝜕θ

𝜕𝑞𝐹3

𝜕𝑥

𝜕𝑞𝐹3

𝜕𝑦

𝜕𝑞𝐹3

𝜕θ 𝑥,𝑦,θ =(0,0,0)

=      

1 0 −ℎ𝑎
0 1 𝑙𝑎
0 1 −𝑙𝑎

𝐹 = 𝐽𝑎𝑐𝑡
𝑇 ∗ 𝑓

Equation used to move from actuation in coupled frame to actuation in the 
cartesian frame centered at COM:

𝑓 = (𝐽𝑎𝑐𝑡)
−𝑇 ∗ 𝐹

Where :  
𝐹 =

𝐹𝑥
𝐹𝑦
𝑀θ

𝑓 =
𝐹1
𝐹2
𝐹3

Forces in Cartesian 
coordinates

Forces in actuators 
coordinates

𝑞𝐹3 = (0 )1 ቎
𝑥

𝑦
+ 𝑅(𝜃)

𝑙𝑎

−
ℎ
2

቏−
𝑙𝑎

−
ℎ
2

= y − 𝑙𝑎 sin 𝜃 +
ℎ

2
(1 − cos(θ))
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III. Jacobian decoupling

Analytical calculation of the Jacobians: 

Sensor Jacobian:

Model of Gravimeter

𝑅 𝜃 =
cos(𝜃) sin(𝜃)
−sin(𝜃) cos(𝜃)

𝑞𝑎1𝑦 = (0 )1 ൦
𝑥

𝑦
+ 𝑅(𝜃)

−
𝑙
2

−
ℎ
2

൪−
−
𝑙
2

−
ℎ
2

= y +
𝑙

2
sin 𝜃 +

ℎ

2
(1 − cos(θ))

𝑞𝑎2𝑥 = (1 )0 ൥
𝑥

𝑦
+ 𝑅(𝜃)

0
ℎ
2

൩−
0
ℎ
2

= x +
ℎ

2
𝑠𝑖𝑛 θ

𝑞𝑎2𝑦 = (0 )1 ൥
𝑥

𝑦
+ 𝑅(𝜃)

0
ℎ
2

൩−
0
ℎ
2

= y +
ℎ

2
(−1 + cos θ )

𝑞𝑎1𝑥 = (1 )0 ൦
𝑥

𝑦
+ 𝑅(𝜃)

−
𝑙
2

−
ℎ
2

൪−
−
𝑙
2

−
ℎ
2

= x −
ℎ

2
sin 𝜃 +

𝑙

2
(1 − cos(θ))

Relative displacements at sensor locations can be calculated as follows:  
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III. Jacobian decoupling

Analytical calculation of the Jacobians: 

Sensor Jacobian:

Model of Gravimeter

𝐴 = 𝐽𝑠𝑒𝑛𝑠 ∗ 𝐴𝑥

Equations used to move from sensing accelerations in decoupled frame to 
sensing accelerations in cartesian frame.

𝐴𝑥 = (𝐽𝑠𝑒𝑛𝑠)
−1 ∗ 𝐴

Where :  
𝐴 =

𝑎1𝑥
𝑎1𝑦
𝑎2𝑥
𝑎2𝑦

𝐴𝑥 =

𝑎𝑥
𝑎𝑦
𝑎θ

Accelerations measured by 
the accelerometers

Accelerations measured 
accelerations in cartesian 
coordinates

𝐽𝑠𝑒𝑛𝑠 =

𝜕𝑞𝑎1𝑥
𝜕𝑥

𝜕𝑞𝑎1𝑥
𝜕𝑦

𝜕𝑞𝑎1𝑥
𝜕θ

𝜕𝑞𝑎1𝑦

𝜕𝑥

𝜕𝑞𝑎1𝑦

𝜕𝑦

𝜕𝑞𝑎1𝑦

𝜕θ

𝜕𝑞𝑎2𝑥
𝜕𝑥

𝜕𝑞𝑎2𝑦

𝜕θ

𝜕𝑞𝑎2𝑥
𝜕𝑦

𝜕𝑞𝑎2𝑦

𝜕θ

𝜕𝑞𝑎2𝑥
𝜕θ

𝜕𝑞𝑎2𝑦

𝜕θ 𝑥,𝑦,θ =(0,0,0)

=

1 0 −
ℎ

2

0 1
𝑙

2

1 0
ℎ

2
0 1 0
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III. Jacobian decoupling

Jacobian centralized vs decentralized Control schemes: 

𝐺𝑥

𝐺

𝑓 =
𝐹1
𝐹2
𝐹3

Decentralized Scheme

A=

𝑎1𝑥
𝑎1𝑦
𝑎2𝑥
𝑎2𝑦

𝐽𝑠𝑒𝑛𝑠
−1𝐺𝐽𝑎𝑐𝑡

−𝑇

𝐹 =

𝐹𝑥
𝐹𝑦
𝑀θ

𝐴𝑥 =

𝑎𝑥
𝑎𝑦
𝑎θ

𝑓 =
𝐹1
𝐹2
𝐹3

Centralized Scheme

A=

𝑎1𝑥
𝑎1𝑦
𝑎2𝑥
𝑎2𝑦

Model of 
Gravimeter



23

III. Jacobian decoupling

𝐽𝑠𝑒𝑛𝑠
−1𝐺𝐽𝑎𝑐𝑡

−𝑇

𝐹 =

𝐹𝑥
𝐹𝑦
𝑀θ

𝑞𝑎 =

𝑞𝑎1𝑥
𝑞𝑎1𝑦
𝑞𝑎2𝑥
𝑞𝑎2𝑦

𝐴𝑥 =

𝑎𝑥
𝑎𝑦
𝑎θ

𝑓 =

𝐹1
𝐹2
𝐹3

Centralized Scheme

Actuator and sensor Jacobian definition :

Decoupled Plant definition:

Two equal off diagonal elements G(1,3) and 
G(3,1) corresponding to coupling between 
translation in X direction and rotation around Z

Other off diagonal elements very small 
compared to diagonal elements

Negligible impact on diagonal elements and hence 
they are considered as decoupled directions

Problem: Coupling at low frequency ?

Open Loop Transfer Functions of the decoupled plant at COM

Jacobian decoupling using Matlab:
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III. Jacobian decoupling

𝑋

𝐹
= 𝑀𝑠2 + 𝐾 −1

Roughly speaking : 

Question: Why decoupling the Jacobian at the COM 
lead to better decoupling at high frequency? 

At high frequency:
𝑋

𝐹
≈ 𝑀𝑠2 −1

and since mass matrix 
is diagonal at COM

Good decoupling at 
high frequency

At low frequency:
𝑋

𝐹
≈ 𝐾 −1

and since K matrix is 
not diagonal at COM 
in the given system

Bad decoupling at 
low frequency

Problem: Coupling at low frequency ?

Idea: Maybe try having a 
diagonal stiffness matrix

HOW ???



25

III. Jacobian decoupling

Jacobian decoupling at center of stiffness (COK):

COK is the geometrical point corresponding to obtaining diagonal stiffness matrix 𝒦 :

Collocated Model

𝒦 =
𝑘1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑘𝑛

𝐾{𝐾} = 𝐽{𝐾}
𝑇 𝒦𝐽{𝐾}

𝑘𝑖 Ƹ𝑠𝑖 Ƹ𝑠𝑖
𝑇 = 𝑑𝑖𝑎𝑔 𝑚𝑎𝑡𝑟𝑖𝑥

𝑘𝑖 Ƹ𝑠𝑖(𝑏𝑖,𝑥 Ƹ𝑠𝑖,𝑦 − 𝑏𝑖,𝑦 Ƹ𝑠𝑖,𝑥)=0

With :
• Ƹ𝑠𝑖:unit vector corresponding to the struts
• 𝑘𝑖: stiffness of the struts
• 𝑏𝑖 :location of joints on the platform

Conditions for the existence of COK for a planar system:  Note: For higher degrees 
of freedom additional 
conditions could apply.

At the end the distance between the COM an COK could be calculated :

Calculate the 
Jacobians considering 
COK as new reference

COK of 
this model
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III. Jacobian decoupling

Open Loop Transfer Functions of the decoupled plant at COM Open Loop Transfer Functions of the decoupled plant at COK

Good decoupling at low frequency achievedGood decoupling at high frequency achieved

Question: What could be done to obtain full 
decoupling over all bandwidth using one Jacobian ?

Jacobian decoupling at COK and COM:
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III. Jacobian decoupling

Answer: Place stiffnesses in the system in such 
a way that COK and COM are collocated

Collocated 
COM and COK

Open Loop Transfer Functions of the decoupled plant at collocated COK and COM

Very good decoupling over all the bandwidth

Plant with collocated COM and COK

Jacobian decoupling at collocated COM and COK:
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Modal decoupling
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IV. Modal decoupling

Simplified Simscape model :

New parameter definition :

Collocated Model

New simplified plant: 3 
actuators with 3 collocated 
displacement sensors
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IV. Modal decoupling

Open Loop Transfer Functions from different Actuators to different sensors  

Too many Off diagonal elements 

Highly Coupled system
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IV. Modal decoupling

Modal decoupling depends on the equations of motion:
𝑀 ሷ𝑥 + 𝐶 ሶ𝑥 + 𝐾𝑥 = 𝐹

Measurement output combination of the motion variable x:
𝑦 = 𝐶𝑜𝑥𝑥 + 𝐶𝑜𝑣 ሶ𝑥

Then apply change of variables :
𝑥 = 𝛷𝑥𝑚

With :
• 𝑥𝑚 modal amplitudes
• 𝛷 a matrix whose columns are the mode shapes of the system 

Map actuator forces as follows using COM jacobian: 
𝐹 = 𝐽𝑇𝜏

Collocated Model

Analytical development of modal decomposition: 
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IV. Modal decoupling

New equation of motion become: 
𝑀𝛷 ሷ𝑥𝑚 + 𝐶𝛷 ሶ𝑥𝑚 + 𝐾𝛷𝑥𝑚 = 𝐽𝑇𝜏

And new form of measured output becomes:
𝑦 = 𝐶𝑜𝑥𝛷𝑥𝑚 + 𝐶𝑜𝑣𝛷 ሶ𝑥𝑚

After multiplying both sides with 𝛷𝑇:
𝛷𝑇𝑀𝛷 ሷ𝑥𝑚 + 𝛷𝑇𝐶𝛷 ሶ𝑥𝑚 + 𝛷𝑇𝐾𝛷𝑥𝑚 = 𝛷𝑇𝐽𝑇𝜏

We denote :

• 𝑀𝑚𝑜𝑑𝑎𝑙 = 𝛷𝑇𝑀𝛷 = 𝑑𝑖𝑎𝑔 𝜇𝑖 as modal mass matrix

• 𝐶𝑚𝑜𝑑𝑎𝑙 = 𝛷𝑇𝐶𝛷 = 𝑑𝑖𝑎𝑔 2𝜉𝑖𝜇𝑖𝑤𝑖 (classical damping)

• 𝐾𝑚𝑜𝑑𝑎𝑙 = 𝛷𝑇𝐾𝛷 = 𝑑𝑖𝑎𝑔(𝜇𝑖𝑤𝑖
2) (modal stiffness matrix)

Collocated Model



33

IV. Modal decoupling

Substituting again in EOM yields  : 
ሷ𝑥𝑚 + 2𝛯𝛺 ሶ𝑥𝑚 + 𝛺2𝑥𝑚 = 𝜇−1𝛷𝑇𝐽𝑇𝜏

With :

• 𝜇 = 𝑑𝑖𝑎𝑔 𝜇𝑖

• 𝛺 = 𝑑𝑖𝑎𝑔 𝑤𝑖

• 𝛯 = 𝑑𝑖𝑎𝑔(𝜉𝑖)

Modal input matrix:

𝐵𝑚 = 𝜇−1𝛷𝑇𝐽𝑇

Modal output matrices:

𝐶𝑚 = 𝐶𝑜𝑥𝛷 + 𝑠𝐶𝑜𝑣𝛷

Modal input :

𝜏𝑚 = 𝐵𝑚𝜏

Collocated Model
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IV. Modal decoupling

The final transfer function from 𝜏𝑚 to 𝑥𝑚 can be shown:

𝑥𝑚

𝜏𝑚
=(𝐼𝑛𝑠

2 + 2𝛯 𝛺s+𝛺2)−1

This form correspond to a diagonal transfer matrix

Dynamics of the system are decoupled from 𝜏𝑚 to 𝑥𝑚

Going back to 𝑦 and 𝜏, they can be expressed using modal variables  :

𝑦

𝜏
=(𝐶𝑜𝑥𝛷 + 𝑠𝐶𝑜𝑣𝛷) (𝐼𝑛𝑠

2 + 2𝛯 𝛺s+𝛺2)−1(𝜇−1𝛷𝑇𝐽𝑇)

𝐶𝑚 𝐵𝑚𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥

Collocated Model
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IV. Modal decoupling

𝐺

𝜏 𝑦

Decentralized Scheme

Centralized vs decentralized Control schemes: 

𝐺
𝑦 𝑥𝑚𝜏

Centralized Scheme

𝜏𝑚
𝐶𝑚

−1𝐵𝑚
−1

𝐺𝑀𝑜𝑑𝑎𝑙

Collocated Model
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IV. Modal decoupling

Collocated Model

𝑥 =

𝑥
𝑦
𝑅𝑧

𝑦 = L = 𝐽𝑥
And 𝑦 = 𝐶𝑜𝑥𝑥 + 𝐶𝑜𝑣 ሶ𝑥

𝐶𝑜𝑥 = 𝐽
𝐶𝑜𝑣 = 0

To get 𝐶𝑚 and 𝐵𝑚 we need to compute 𝐶𝑜𝑥 , 𝐶𝑜𝑣, 𝛷, 𝜇 and 𝐽:  

get 𝛷 from K and 
M matrices

𝐽 is Jacobian

Calculated 
similar to what 
seen before
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IV. Modal decoupling

𝐶𝑚 =
−0.1 −1.8 0
−0.2 0,5 1
0.2 −0.5 1

𝐵𝑚 =
−0.0004 −0.0007 −0.0007
−0.051 0.0041 −0.0041

0 0.0025 0.0025

Modal decomposition performed using the following matlab command: 

𝐺
𝑦 𝑥𝑚𝜏

Centralized Scheme

𝜏 𝑚
𝐶𝑚

−1𝐵𝑚
−1

𝐺𝑀𝑜𝑑𝑎𝑙

Open Loop Transfer Functions of the decoupled plant using modal decomposition

Plant perfectly decoupled 
over the whole bandwidth 

It is possible to use SISO control approaches 
to actively control all decoupled modes.

Modal decomposition using Matlab:
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Comparison and Conclusions
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V. Comparison and Conclusions

Collocated Model

New simplified plant: 3 
actuators with 3 collocated 
displacement sensors

Compare all presented decoupling strategies:

• SVD decomposition
• Jacobian decoupling at COM
• Jacobian decoupling at COK
• Modal decomposition

Do that using a simplified 
collocated system.

Apply SVD and Jacobian decoupling 
at COM for this model and compare 
them with results obtained by 
model decomposition and Jacobian 
decoupling at COM 



V. Comparison and Conclusions

Open Loop Transfer Functions of the decoupled plant using Jacobian at COK Open Loop Transfer Functions of the decoupled plant using Jacobian at COM

Same compromise as shown before:
• Decouple at COK for good decoupling at low frequencies
• Decouple at COM for good decoupling at high frequencies

Jacobian decoupling of the collocated system:



V. Comparison and Conclusions

SVD decoupling of the collocated system:

Perfect decoupling over all 
the frequency bandwidth

Open Loop Transfer Functions of the decoupled plant using SVD

SVD gave much better decoupling 
when having collocated actuators 
and sensors

Decoupling frequency = 10Hz

Better performance then Jacobians 
decoupling for this system
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V. Comparison and Conclusions

Collocated Model

New simplified plant: 3 
actuators with 3 collocated 
displacement sensors

Open Loop Transfer Functions of the decoupled plant using modal decomposition

Perfect decoupling 
over all bandwidth

Have similar performance to SVD 
and much better decoupling 
compared to Jacobians

Modal decoupling of the collocated system:
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V. Comparison and Conclusions

Comparison between Three different strategies:

Jacobians Modal Decomposition SVD

Philosophy Topology Driven Physics Driven Data Driven

Requirements Known geometry Known equations of motion Identified FRF

Decoupling 
Matrices

Decoupling using J obtained 
from geometry

Decoupling using 𝛷 obtained from 
modal decomposition

Decoupling using U and V 
obtained from SVD
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V. Comparison and Conclusions

Comparison between Three different strategies:

Jacobians Modal Decomposition SVD

Decoupled 
Plant

𝐺{𝑂} = 𝐽{𝑂}
−1𝐺𝐽{𝑂}

−𝑇 𝐺𝑚 = 𝐶𝑚
−1𝐺𝐵𝑚

−1 𝐺𝑆𝑉𝐷 = 𝑈−1𝐺(s)𝑉−𝑇

Physical 
Interpretation

Forces/Torques to 
Displacement/Rotation in chosen 
frame

Inputs to excite individual modes
Directions of max to min 
controllability/observability

Decoupling 
Properties

Decoupling at low or high 
frequency depending on the 
chosen frame

Good decoupling at all frequencies Good decoupling near 
the chosen frequency
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V. Comparison and Conclusions

Comparison between Three different strategies:

Jacobians Modal Decomposition SVD

Pros

• Physical inputs / outputs

• Good decoupling at High 
frequency (diagonal mass 
matrix if Jacobian taken at 
the COM)

• Good decoupling at Low 
frequency (if Jacobian taken 
at specific point)

• 2nd order diagonal plant

• Target specific modes • Good Decoupling 
near the crossover

• Very General
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V. Comparison and Conclusions

Comparison between Three different strategies:

Jacobians Modal Decomposition SVD

Cons

• Coupling between 
force/rotation may be 
high at low frequency 
(non diagonal terms in K)

• If good decoupling at all 
frequencies => requires 
specific mechanical 
architecture

• Need analytical equations
• Loose the physical 

meaning of 
inputs/outputs

• Decoupling depends 
on the real 
approximation validity
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Thank you
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