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Abstract
This paper presents an exact H∞ tuning methodology for a positive position feedback (PPF) controller applied to a single-

degree-of-freedom (SDOF) system. To this end, an equivalence between the closed-loop receptances of a PPF controller

and a resistive–inductive shunt with a negative capacitance is put forward, which, in turn, enables us to adopt the existing

shunt tuning rule in the active control case. The resulting tuning procedure is demonstrated using two numerical examples,

namely, an SDOF system and a finite element model of a cantilever beam. Based on the results obtained on the cantilever

beam, it is shown that the influence of higher-frequency modes cannot be neglected to obtain effective vibration damping.

The design procedure proposed for the PPF controller is then extended to this case and validated using an experimental

cantilever beam.
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1. Introduction

The attenuation of structural vibration is a well-known
engineering problem. Today, mechanical structures tend
to be more and more lightweight, which results in low
structural damping and increased susceptibility to fatigue.
One way to tackle this problem is to control the structure
using an active damping device. Classical active control
approaches are the direct velocity feedback (Balas, 1979)
and the integral force feedback (Preumont et al., 1992). An
interesting alternative is a digital shunt absorber whose
control authority can be enhanced with a negative capac-
itance (NC) (De Marneffe and Preumont, 2008; Fleming
and Moheimani, 2005).

Another popular approach for active control is positive
position feedback (PPF) (Fanson, 1987; Fanson and
Caughey, 1990; Goh and Caughey, 1985). In this ap-
proach, the structure’s dynamics are attenuated by a com-
pensator that controls the displacement with an actuation
force and acts like a filter. This controller takes its name
from the fact that the position coordinate measured by
a sensor is both positively fed to the compensator and fed
back to the structure via an actuator (Agnes, 1997; Fanson
and Caughey, 1990). For a second-order PPF strategy, the
controller function comprises three parameters, namely, the
pole frequency, the damping ratio, and the controller gain.

An advantage of PPF is that it can be designed based on an
experimental transfer function so that no analytical model of
the structure is needed. In addition, given its low-pass filter
characteristic, the controller rolls off at higher frequency,
and, hence, does not risk to excite residual modes (Inman,
2006). Through a comparison between velocity feedback
and PPF, Goh and Caughey (1985) pointed out that the
system stability can be more easily guaranteed with the
latter approach. A downside of PPF controllers is that they
induce low-frequency softening.

To design the PPF controller, a maximum attainable
closed-loop damping strategy in combination with tuning
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filters in the multimodal case can be adopted (Goh and
Caughey, 1985). Dosch et al., 1992b designed a self-sensing
PPF controller using piezoelectric transducers acting as
a sensor and an actuator at the same time. To choose ad-
equate controller parameters, they used an optimization
algorithm seeking optimal damping of the plant resonance
(Dosch et al., 1992, 1992b). Kwak and Han (1998) used
genetic algorithms to choose the PPF parameters. However,
only the controller frequency was varied therein while the
other parameters were kept constant. PPF controllers are
also often tuned to resonate at the natural frequency of the
host structure so that the main focus is on the pole frequency
(Huertas and Rohaı́lkiv, 2012). If a maximum flatband
response is targeted, the PPF controller can be designed by
means of a fifth-order Butterworth filter for a specific
frequency as it was done by Russell et al. (2016).

Recent works aimed to provide systematic and ef-
fective tuning rules for PPF controllers, all the while
limiting the undesirable low-frequency softening effects.
Paknejad et al. (2020) optimized all three controller
parameters based on maximum damping. In order to limit
the softening introduced at low frequencies, they mini-
mized the H2 norm of the response during the final de-
sign. Their findings were demonstrated both numerically
and experimentally. Another way to tackle the increased
static response is to express the PPF filter in a fractional-
order format (Marinangeli et al., 2018; Niu et al., 2018).
If the system dynamics are well known, one could also
add a feedforward control to counteract the increasing
static response (Mokrani, 2022). A thorough study of the
interplay between desired damping performance, the
static softening, and system stability was presented by
MacLean et al. (2022). Visalakshi et al. (2021) recently
showed that PPF controllers can be tuned with a pole
placement method with guaranteed stability properties.
PPF controllers were also used in an adaptive setting
(Saeed et al., 2021), with advanced composite (Silva
et al., 2023) and aerospace (Gülbahçe and Çelik, 2023;
Yuan et al., 2024) structures, and with nonlinear systems
(Amer et al., 2022; Hamed et al., 2020; Saeed et al., 2021;
Zhao et al., 2019). Of special interest for this work is that
of Zhao et al. (2019), which proposed to tune the PPF
controller by adapting the fixed-point theory developed
by Den Hartog for tuned mass dampers. The receptance
of the controlled system thus features two peaks of ap-
proximately equal amplitude in place of the targeted
resonance. However, this approach does not provide an
exact solution in the H∞ sense.

A PPF controller usually targets a specific resonance
frequency of the host system. However, a real system
cannot always be accurately described as a single-
degree-of-freedom (SDOF) system; it is thus desirable
to account for the influence of other structural modes
during the tuning process. From a modeling perspective,
for collocated control, Clark (1997) proposed to account

for their influence by directly adding a feedthrough term
to a state-space model that includes the overall dis-
placement contribution of the out-of-bandwidth modes.
Optionally, they suggested adding a second-order sys-
tem in parallel to the model of the truncated system,
simulating a single out-of-bandwidth mode represen-
tative of the other-mode dynamics. These corrections
were shown to replicate the pole-zero pattern of the full
system more faithfully. The influence of higher-order
modes is also of crucial importance from the tuning
perspective. Hoffmeyer and Høgsberg (2020) added
a fictitious stiffness to simplify the system. The stiffness
was then used to tune a PPF controller and to suc-
cessfully introduce system damping in a numerical
model. Fenik, S. and Starek, L. (2008) accounted for the
influence of higher-order modes by including a constant
as a correction of the controller gain in their formulas for
the optimal controller parameters. They achieved
maximum closed-loop damping but expressed the
controller gain as a function of the controller frequency
and damping ratio. Additionally, they presented a mul-
timodal PPF strategy where they accounted for the in-
fluence of each PPF controller in descending order with
respect to their natural frequencies (Fenik, S. and
Starek, L., 2008). There also exist approaches to ac-
count for the influence of higher-order modes in pie-
zoelectric shunt damping by exploiting the dynamic
capacitance function (Berardengo et al., 2016; Høgsberg
and Krenk, 2017; Raze et al., 2021).

In spite of a number of successful advanced appli-
cations, there still remain fundamental aspects on the
PPF tuning currently unaddressed in the literature. First,
to the authors’ knowledge, there exists no closed-form
solution to the H∞ optimization problem in the case of an
SDOF structure with a PPF controller. Second, a method
such as that of Fenik, S. and Starek, L. (2008) allowing
to extend simple SDOF tuning rules to the MDOF
context is extremely useful for quick and effective
tuning. Yet, the latter is limited to the pole placement
problem. This work aims to solve these issues by
drawing results from the research field of piezoelectric
shunts. Interestingly, Agnes (1997) was the first to point
out a dynamical similarity between a resistive–inductive
(RL) shunt and a PPF controller. In fact, there exists
a full equivalence between the receptance functions of
an RL shunt with an NC and of a PPF controller, as will
be shown in this work. Building upon this equivalence,
a new optimal controller design aiming at equal peaks of
the controlled receptance function is proposed for the
PPF. This work can be seen as a continuation of
a conference paper (Dietrich et al., 2022), making it
applicable to multiple-degree-of-freedom (MDOF)
structures and providing an experimental validation.
Specifically, the original contributions of this work are
as follows:
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(a) The equivalence of the closed-loop receptances of
SDOF structures controlled by an RL shunt with an NC
or by a PPF controller is mathematically demonstrated,
suggesting that identical performance can be attained
by the two approaches.

(b) The coefficients of the receptances are functions of the
tunable parameters. Using the aforementioned equiv-
alence, exactH∞ tuning rules are extended to the PPF to
find the optimal values of the tunable parameters. In
particular, it is shown that there exists a gain value that
leads to a global minimum of the H∞ norm.

(c) For practical applications, these tuning rules are
adapted to account for the influence of non-resonant
modes in the MDOF case in an approximate way. This
simple yet effective correction can substantially im-
prove performance and without need for complex
numerical optimization procedures. We will also show
that the correction factors can be easily extracted from
plant transfer functions.

(d) These adapted tuning rules are eventually numerically
and experimentally demonstrated with a piezoelectric
beam. It is also shown how they improve upon the state-
of-the-art method for H∞ optimization of Zhao et al.
(2019).

The proposed tuning rules and corrections for non-resonant
modes are simple and usable with experimentally identified
models, making them widely applicable.

This work is organized as follows. First, the exact H∞

tuning rule is applied to an SDOF example to demonstrate
its performance and to investigate the open-loop transfer
function and stability margins. Second, through correction
factors applied to all controller parameters, the procedure is
extended to account for the influence of higher-frequency
modes. The developments are validated both numerically
and experimentally. Finally, the effectiveness and limi-
tations of the proposed tuning rule in an MDOF context are
discussed.

2. Positive position feedback controller
tuning

2.1. An SDOF system with a PPF controller

For an SDOF structure, the equation of motion using the
Laplace variable s is given by

mxs2 þ kx ¼ f , (1)

where x is the displacement, f is an external force, andm and k
are the mass and stiffness of the mechanical system, re-
spectively.We regard the case of a system controlled by a PPF
controller, considering a collocated displacement sensor and
voltage actuator. The equations of motion then read

(
mxs2 þ kx ¼ f þ ω2

cgcuc�
s2 þ 2ωcζ csþ ω2

c

�
uc ¼ x

: (2)

The variables uc, ζ c,ωc, and gc refer to the control signal,
damping ratio, frequency, and gain of the controller, re-
spectively. Inserting the second line of equation (2) into the
first line yields

�
ms2 þ k

�
x ¼ f þ ω2

cgcx

s2 þ 2ωcζ c þ ω2
c

: (3)

Dividing equation (3) by x and forming its reciprocal
results in the closed-loop receptance function

x

f
¼
�
ms2 þ k � ω2

cgc
s2 þ 2ωcζ csþ ω2

c

��1

: (4)

Using the definitions given by Ikegame et al. (2019)

xst :¼ f

k
,ω0 :¼

ffiffiffiffi
k

m

r
,bs :¼ s

ω0
, νc : ¼ ωc

ω0
, g :¼ gc

k
, (5)

Equation (4) can be written in dimensionless form:

hðbsÞ ¼ x

xst
¼
26664ŝ2 þ 1� g

ŝ2

ν2c
þ 2ζ c

ŝ
νc
þ 1

37775
�1

: (6)

2.2. An SDOF system with an RL shunt in series with
an NC

The equations of motion of the piezoelectric SDOF
structure connected to an RL shunt with an NC are given
by 8><>:

mxs2 þ kocx� θq ¼ f

θx� 1

Cε
p

q ¼ V
: (7)

q is the electrical charge of the electrodes of the piezo-
electric transducer, and V is the voltage across them. koc is
the system stiffness when the transducer is in open-circuit,
and Cε

p is the capacitance of the piezoelectric transducer

under constant strain. The equations are coupled through the
electromechanical coupling coefficient θ. This coefficient
characterizes how much energy is transformed between the
piezoelectric transducer and the mechanical system
(Hagood and Von Flotow, 1991). In open-circuit (q = 0), the
resonance frequency isωoc ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
koc=m

p
. In short-circuit (V =

0), ωsc ¼
ffiffiffiffiffiffiffiffiffiffiffi
ksc=m

p
, where

ksc ¼ koc � θ2Cε
p: (8)
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A way to assess the electromechanical coupling is the
dimensionless electromechanical coupling factor (EMCF) Kc

that relates themodal strain energies when the transducer is in
short- and in open-circuit (Toftekær et al., 2020):

K2
c ¼ ω2

oc � ω2
sc

ω2
sc

: (9)

Thus, the coupling factor depends on the fixed properties
of the host system through θ and Cε

p. One could also
normalize the coupling factor with ωoc, defining the EMCF
as

α2 ¼ ω2
oc � ω2

sc

ω2
oc

¼ K2
c

1þ K2
c

: (10)

When the piezoelectric transducer is connected to an RL
shunt circuit in series with a negative capacitance Cn, we
obtain �

Ls2 þ Rs� 1

Cn

�
q ¼ V : (11)

Thus, the electrical part of equation (7) reads

Ls2qþ Rsqþ 1

Ceff
q� θx ¼ 0, (12)

where the effective capacitance is (Berardengo et al., 2016)

1

Ceff
¼ 1

Cε
p

� 1

Cn
: (13)

The transfer function from the force to the displacement
is obtained from equations (7) and (12)

x

f
¼
2664ms2 þ koc � θ2

Ls2 þ Rsþ 1
Ceff

3775
�1

: (14)

Considering the electrical frequency and damping ratio of
the shunt

ω2
e :¼

1

Ceff L
, 2ωeζ e :¼

R

L
(15)

and (Ikegame et al., 2019)

xst :¼ f

koc
, ~α2 :¼ θ2Ceff

koc
, νe :¼ ωe

ωoc
,bs :¼ s

ωoc
, (16)

the transfer function of the SDOF system with the piezo-
electric shunt can be expressed in dimensionless form

hðbsÞ ¼ x

xst
¼
26664ŝ2 þ 1� ~α2

ŝ2

ν2e
þ 2ζ e

ŝ
νe
þ 1

37775
�1

, (17)

where tilde refers to the case when an NC is used.

From the dimensionless receptance functions in equa-
tions (6) and (17), we conclude that a PPF controller and an
RL shunt with an NC are completely equivalent in terms of
closed-loop receptance. The correspondence between the
different parameters reads as follows:

g ≡ ~α2, νc ≡ νe, ζ c ≡ ζ e: (18)

Specifically, the gain of the PPF controller g corresponds to
~α which is related to the enhanced electromechanical
coupling of the structure and is influenced directly by the
NC.

The implications of this equivalence are discussed in
depth in Dietrich et al. (2022) for an SDOF system. As was
shown therein, the PPF results in much better stability
margins than the RL shunt with an NC, which is why the
former is the main focus of this work.

2.3. H∞ optimization

Exact tuning rules for the H∞ optimization of passive RL
shunts were introduced by Soltani et al. (2014). Spe-
cifically, these rules are based on the optimization of the
receptance of the controlled system. The optimal tuning
results in two resonance peaks featuring identical am-
plitudes in the receptance function. As is well known
from the literature, adding an NC to this system leads to
the same model class as in the case without NC
(Berardengo et al., 2016). It was also shown herein that
this same model class represents the case of an SDOF
structure with a PPF controller. Therefore, both the NC
and PPF optimization problems can be treated with the
method of Soltani et al. (2014) (a similar philosophy was
followed for electromagnetic shunts by Ikegame et al.
(2019)). These results can directly be exploited to tune
the parameters of a PPF controller, thereby providing an
exact closed-form solution to the H∞ control problem for
the PPF case. The parameters for which there is an
equivalence, namely, g, νc, and ζ c, can thus be optimized
for the PPF. As for the NC, one can first optimize the
parameters ~α2, νe, and ζ e, and deduce the shunt pa-
rameters Cn, R, and L using equations (13) and (17).

Thanks to the incorporation of the controller gain g, there
is however an additional free parameter in comparison with
the passive RL shunt approach. First, we fix g to find
optimal values for νc and ζ c by minimizing the H∞ norm of
the transfer function hðibωÞ. Here, i is the imaginary number
and bω is a circular frequency normalized by ω0:

minνc , ζ c khðibωcÞk∞
→ find νc, ζ c such that jhðibωc,AÞj ¼ jhðibωc,BÞj ≡ h0:

h0 is the maximum amplification of the two equal resonance
peaks located at dimensionless frequencies bωc,A and bωc,B.
h0 is expressed as a function of g (Soltani et al., 2014):
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h0 ¼ 8ffiffiffi
g

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
54g2 � 144g þ 64

p þ 9g þ 16
q (19)

which yields

135h40g
4 � 864h40g

3 þ 1152h20g
2 þ 2048h20g � 4096 ¼ 0:

(20)

This quartic equation in g can be solved in closed form so
that the gain g can be determined from a desired amplifi-
cation h0. The peak amplitude h0 is now minimized. Using
Mathematica (Wolfram Research Inc., 2022):

∂h0
∂g

¼ �
4

 
216g3=2 � 288

ffiffiffi
g

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
54g2 � 144g þ 64

p þ 18
ffiffiffi
g

p
!

ffiffiffi
g

p �
9g þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
54g2 � 144g þ 64

p
þ 16

�3=2

� 8

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9g þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
54g2 � 144g þ 64

p
þ 16

q :

(21)

Equating this derivative to zero eventually yields the
value gopt that minimizes the peak amplitude h0:

gopt ¼ 8

15
¼ 0:5333: (22)

The minimum attainable H∞ norm can be found by
inserting gopt in equation (19):

h0, opt ¼
ffiffiffi
5

p
: (23)

Using gopt, the parameters νc and ζ c can now be found.
For the shunt, they are expressed as a function of the
coupling factor in Soltani et al. (2014). For the PPF con-
troller, we introduce K2 = g/(1 � g) and apply the tuning
rules provided by Soltani et al. (2014). With the in-
termediate parameter

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64� 16K2 � 26K4

p � K2

8
, (24)

the optimal frequency and damping ratios are

νc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3K2 � 4r þ 8

4K2 þ 4

r
(25)

and

ζ c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27K4 þ 80K2 þ 64� 16r

�
4þ 3K2

�q
ffiffiffi
2

p �
5K2 þ 8

� , (26)

respectively.

3. Performance and stability investigations

The performance of the derived PPF tuning rule is dem-
onstrated herein. Both the open-loop transfer function and
the stability of the controlled system are investigated.

3.1. Performance

The transfer functions between the structural response and
the external force are compared in Figure 1 in the un-
controlled (equation (1)) and controlled (equation (6)) ca-
ses. The optimal case is represented by ( ). Thanks to the
PPF, the original resonance peak has been replaced with two
resonance peaks featuring much lower—and equal—am-
plitudes. However, we also observe that the controller in-
creases the static response which is confirmed by the
formula (cf. equation (6))

hð0Þ ¼ 1

1� g
: (27)

Frequency response functions (FRFs) for different values of
the gain are displayed in Figure 1. If g < gopt, the static
response is smaller than in the optimal case but the mag-
nitude of the resonance amplitude is greater.

Figure 1. FRFs between the structural response and the external

disturbance voltage of the SDOF system controlled by a PPF

controller with different gain settings. The uncontrolled response

is represented with ( ).

Dietrich et al. 5



Soltani et al. (2014) stated that the α for shunts
should not be chosen higher than ~αmax ¼ 0:74815 to
guarantee an equal-peak design. This translates into
gmax = 0.5597 for the PPF controller. Figure 2 compares
the maximum amplitude of the receptance function h0
with the amplitude of the static response for different
values of the gain g. Indeed, when g > gmax, the
maximum of the receptance function is shifted to bs ¼ 0.
The minimum amplitude in equation (23) obtained for
gopt is thus an absolute minimum. In addition, the H2

norm of the FRF response is presented in Figure 2. It
can be observed that it decreases in a relatively similar
fashion to the H∞ norm; however, the minimum of the
H2 norm occurs for a lower value of the gain (g ≈ 0.49).

For the fixed-points-based method from Zhao et al.
(2018, 2019), the gain needs to be chosen according to
a trade-off between the static softening and the amplitude
reduction. Zhao et al. stated that, for ideal performance, the
gain should be chosen as large as possible while respecting
the stability limit. However, doing so will substantially
enlarge the static response of the controller so that, even-
tually, g needs to be smaller. It is set to gopt herein. The
comparison with the proposed tuning rule is displayed in
Figure 3. It can be seen that the fixed-points method does
not yield resonance peaks with equal amplitude whereas the
static responses are identical, and the resulting H∞ norm is
lower.

3.2. Stability and stability margins

In order to explain the stability of the controlled system, we
consider the open-loop transfer function for a plant GPPF

controlled by a PPF controller, expressed as

Hol,PPFðbsÞ ¼ �GPPFðbsÞPPFðbsÞ: (28)

The plant transfer function GPPF(s) is the transfer function
between the controller force fPPF ¼ ω2

cgcuc and the dis-
placement x when f = 0:

GPPFðsÞ ¼ 1

ms2 þ k
: (29)

The PPF controller function is the second-order filter

PPFðsÞ ¼ gcω2
c

s2 þ 2ωcζ csþ ω2
c

: (30)

Using equations (29) and (30), and the parameters in
equation (5), the open-loop transfer function in di-
mensionless form is

Figure 3. FRFs between the structural response and external

force of an SDOF system. Uncontrolled ( ), controlled by a PPF

controller with exact H∞ rules ( ), and by a tuning based on

fixed points ( ).

Figure 4. Bode plot of the open-loop transfer function of a di-

mensionless SDOF system with a PPF controller tuned according

to the H∞ tuning rule. Decisive phase margins are indicated with

a .

Figure 2. Maximum amplitude h0 ( ), H2 norm of the FRF

amplitude ( ), and static response ( ) of the controlled SDOF

system as a function of the gain g.
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Hol,PPFðbsÞ ¼ �GPPFðbsÞPPFðbsÞ
¼ � 1bs 2 þ 1

gbs 2
ν2c

þ 2ζ c
bs
νc
þ 1

: (31)

Previous works have shown that as long as the damping
ratio and optimal frequency are greater than zero, the
only parameter that could destabilize the controller is g
(De Marneffe and Preumont, 2008; Zhao et al., 2018). A
stability limit is reached when the structure’s stiffness is
counterbalanced by the controller gain. Krenk and
Høgsberg (2013) derived the stability criterion di-
rectly using the stiffness matrix, stating that the stiff-
ness of the structure (in the MDOF case, including
higher-order modes) must be greater than the gain
factor(s). For the SDOF case, this criterion then con-
denses into a scalar. Zhao et al. (2018) defined the
stability limit for the gain of a PPF controller by g < 1.
In the context of the shunt analogy, the addition of an
NC into the circuit can be interpreted as introducing
a negative stiffness to the system. Similarly to the PPF
controller, the system then becomes unstable if the
negative stiffness of the transducer cancels out the
structure’s stiffness (as it is seen from the transducer)
(De Marneffe and Preumont, 2008). A detailed dis-
cussion of the analogy with respect to the system sta-
bility can be found in Dietrich (2023).

Closed-loop stability is a necessary requirement to
guarantee the performance of a control system but it is not
a sufficient one. In practice, one has to ensure sufficient
stability margins to account for uncertainties and un-
modeled dynamics in the system. These margins can be
deduced from the open-loop transfer functions (Franklin
et al., 1990). The Bode plot of the open-loop transfer
function in the tuned case in Figure 4 features a phase
margin of �53.2° or 83.7°, which can be considered ac-
ceptable. It should be noted that a negative phase margin in
this case does not result in an unstable system. It rather
means that if the system undergoes a phase lead (and not
lag) modification, it will become unstable, as can be de-
duced from Figure 4. We note that the open-loop transfer
function in the optimal case features the smallest phase
margin and that all variations of the controller gain g leave
sufficient phase margins for a viable use in practical
applications.

4. Extension to MDOF systems

In the previous sections, the tuning rule was established for
an SDOF host structure. This section considers the MDOF
case. In this context, the main idea is to tune the parameters
of the PPF controller in order to minimize the H∞ norm of
the modal amplitude of the targeted mode. The influence of
other modes is taken into account via correction factors of

the controller parameters. The proposed correction method
is based on developments for piezoelectric vibration ab-
sorbers (Berardengo et al., 2016; Raze et al., 2022) and
adapted to the active control case. It also shares similarities
with the method of Fenik, S. and Starek, L. (2008) but is not
limited to a pole placement problem.

4.1. Accounting for higher-order modes

The equations of motion in modal space of an MDOF
system with a PPF controller are8>><>>:

�
s2IþV2�η ¼ f þ wω2

cgcuc�
s2 þ 2ζ cωcsþ ω2

c

�
uc ¼ ω2

cgcxs
xs ¼ vTη

, (32)

where vT and w are vectors indicating the position of the
sensor and of the actuator, respectively. I is the identity
matrix, and V is a diagonal matrix with the resonance
frequencies. η is the vector of modal amplitudes, and xs is
the sensor signal. η is partitioned such that

ηT ¼ 	ηT
< i, ηi, η

T
> i



: (33)

Here, the subscript i stands for the targeted mode so that η<i
and η>i include the modal amplitudes of lower- and higher-
frequency modes, respectively. Vectors v andw are likewise
partitioned as

vT ¼ 	vT< i, vi, vT> i
 and wT ¼ 	wT
< i,wi,w

T
> i



: (34)

For the following considerations, we set f = 0. For η<i,
one can assume that the dominant term of the first line of
equation (32) is

s2η< i ¼ w< iω
2
cgcuc (35)

as, in this frequency range, V is small in relation to s2I. As
for η>i, one obtains

V2η > i ¼ w > iω
2
cgcuc, (36)

neglecting the s2I term. The sensed signal xs can be ex-
pressed with equation (33), so that

xs ¼ vT< iη< i þ viηi þ vT> iη > i: (37)

Inserting equations (35) and (36) in equation (37) yields

xs ¼ 1

s2
vT< iw < iω

2
cgcuc þ viηi þ vT> iV

�2w > iω
2
cgcuc: (38)

Introducing the auxiliary variables

κ < i

s2
¼ vT< i

1

s2
w < i and κ > i ¼ vT> iV

�2w > i, (39)

the insertion of equation (38) into equation (32) gives
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�
s2 þ ω2

i

�
ηi ¼ wiω

2
cgcuc�

s2 þ 2ζ cωcsþ ω2
c � ω2

cgcκ > i � ω2
cgcκ < i

1

s2

�
uc ¼ viηi

:

8><>:
(40)

In the experiments conducted in this work, the first structural
mode is targeted. Thus, κ<i = 0. If higher-order modes were
targeted, one could as a first approximation also neglect its
associated term, given that its magnitude decays with the square
of the frequency. Introducing now the parameters

buc ¼uc
vi
, bω2

c ¼ ω2
c � ω2

cgcκ > i,

bgc ¼ ω2
cgcwivibω2

c

, bζ c ¼
ζ cωcbωc

,
(41)

equation (40) becomes(�
s2 þ ω2

i

�
ηi ¼ bω2

cbgcbuc�
s2 þ 2bζ cbωcsþ bω2

c

�buc ¼ ηi,
(42)

which has the same form as equation (2). The tuning for-
mulas given in equations (22) and (24)–(26) can thus be
used to tune the controller parameters. Using equation (41),
we can then express the corrected PPF controller parameters
as

gc ¼ bgc
viwi þ κ > ibgc, ω2

c ¼
bω2
c

1� gcκ > i
, ζ c ¼

bζ cbωc

ωc
: (43)

The tuning procedure for the PPF controller in the
MDOF case is as follows:

(1) Identification of the system parameters ωi, wi, vi, and
κ>i.

(2) Computation of the optimal PPF controller parametersbωc, bζ c, and bgc, using ωi as an SDOF case according to
the previously defined tuning rules.

(3) Correction of the controller parameters according to
equation (43).

An advantage of this on-hand methodology is that it is
widely and conveniently applicable since the

identification of the system parameters can be easily
achieved with state-of-the-art methods. In comparison
to Clark (1997), it can be used for different sensor–
actuator configurations. However, the equal-peak de-
sign is only enforced on one modal coordinate, and the
corrections depend on the considered plant transfer
function. Thus, an equal-peak design cannot be guar-
anteed a priori, and the performance depends on the
considered input and output locations.

5. Numerical demonstration on
a cantilever beam

The structure chosen to demonstrate the previous devel-
opments numerically and experimentally is the cantilever
steel beam with a thin lamina at its free end schematized in
Figure 5. The beam comprises ten piezoceramic patches on
each side of the beam. This structure was the subject of
other studies, often in a clamped–clamped configuration to
trigger the nonlinearity of the thin lamina (see, e.g., Raze
et al. (2020; 2022)). In this study, the clamping of the thin
lamina is freed to remain in a linear regime of motion.

For the model, a steel beam (700 mm × 14 mm × 14 mm)
with a thin steel lamina (100 mm × 14 mm × 0.5 mm) and
with piezoceramic patches of the type PSI-5A4E is con-
sidered. Two piezoelectric patches, namely, P1 and P2, act
as voltage sensors, both on one side and close to the

Figure 5. Top view on the cantilever beam setup.

Figure 6. Bode plot of the plant transfer functions of the nu-

merical beam. Non-collocated (P2 to P3) ( ) and pseudo-

collocated (P1 to P3) ( ).
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clamping. The patch P3 functions as a voltage actuator of
the controller and P4 as a voltage actuator imposing
a disturbance voltage to the structure. The displacement is
measured at the end of the cantilever beam.

A finite element (FE) model with Euler–Bernoulli beam
elements was built based on the method proposed by
Thomas et al. (2009), considering three DOFs per node
(axial, transversal, and rotation), accounting for displace-
ments along the x- and y-axis and rotations around the z-
axis (cf. Figure 5). The other DOFs were neglected as their
motions were considered negligible; more sophisticated and
accurate 2D or 3D models could be built but this was not

deemed necessary given the good agreement of the nu-
merical model with experimental results. Both the beam and
the lamina were discretized with one element per millimeter,
yielding a model with 4437 DOFs. For simplification,
a Craig–Bampton-based model order reduction was used
according to the technique in Raze et al. (2022). One in-
terface mechanical DOF and all electrical DOFs for the
patches were retained together with 20 vibration modes.
Modal damping of 0.2% was added in the model. To assess
control performance, the transfer functions from the dis-
turbance voltage to the tip displacement are regarded. In
addition, the transfer functions from a disturbance force at
the beam tip to the tip displacement are also taken into
account.

5.1. Plant transfer functions

In control theory, a collocated sensor–actuator pair is always
preferable since it is accompanied by an alternating pole-
zero pattern in the open-loop transfer function, which offers
good stability margins (Preumont, 2011). The plant transfer
function of pseudo-collocated (P1 to P3) and non-
collocated (P2 to P3) configurations are displayed in
Figure 6. The P1 to P3 case corresponds to two piezo-
electric patches placed at the same location, but on either
side of the beam. It is referred to as pseudo-collocated
because transversal in-plane motions may cause a distur-
bance to the alternating pole-zero pattern at high fre-
quencies. For simplicity, this case will be referred to as
collocated in what follows. Nonetheless, both config-
urations feature an alternating pole-zero pattern, although
this feature is certainly not generic for non-collocated cases.

In this numerical experiment, our target is the first mode,
which corresponds to the first bending mode of the canti-
lever beam. The identified resonance frequencies are
24.28 Hz, 42.13 Hz, and 152.9 Hz for modes #1–#3, re-
spectively. Figure 6 shows that the first two poles are rel-
atively close to each other. Therefore, an SDOF
approximation of the first mode might not be adequate for
the tuning process.

5.2. Collocated versus non-collocated setups

The performance of the PPF controller designed according
to the proposed H∞ tuning rule is displayed in Figure 7. In
Figure 7(a), a disturbance voltage is acting via P4. Both
configurations yield a substantial resonance amplitude re-
duction (around 40 dB), but only the non-collocated con-
figuration exhibits a strong amplification of the static
response. Indeed, the piezoelectric actuator applies a torque
which only impacts the beam section of P4 (the in-plane
displacements are assumed to be small herein). So, in the
static case, only the sensor at P2 can sense the disturbance
and activate the controller. We also note that the two

Figure 7. FRFs of the numerical beam. Uncontrolled ( ),

controlled by a PPF accounting for the influence of higher-order

modes in a non-collocated ( ), and pseudo-collocated ( )

setup.
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resonance peaks visible in Figure 3 are much harder to see
here because of the increased static response and the per-
turbation due to the higher-frequency modes.

A disturbance force at beam tip is now considered in
Figure 7(b). The performance is similar in both config-
urations leading to an amplitude reduction of 47 dB. Be-
cause the disturbance force at beam tip mostly activates the
first bending mode, the influence of the other modes is
reduced, and two equal peaks can be enforced by the
controller. These observations demonstrate the impact of the
choice of the transfer function on performance assessment.

5.3. The influence of higher modes

Figure 8 compares the receptance functions for the un-
controlled system, as well as the controlled system with
a PPF controller tuned with and without higher-mode
correction (collocated case). The correction leads to an
improvement of 5.5 dB and 3.5 dB in Figure 8(a) and (b),
respectively. In addition, the PPF controller is strongly

detuned when higher modes are neglected because a reso-
nance peak remains in the frequency range of interest.

5.4. Variations of the controller gain

The variation of the controller gain is now studied for
the collocated controller, similar to what was achieved
in Figure 1. Figure 9 presents what happens for a small
variation of g. For a disturbance voltage, we observe an
imbalance between the two resonance peaks, even when
the controller is optimally tuned. As previously dis-
cussed, this is probably due to the influence of other
structural modes and to the static response. Also, the
optimally tuned controller does not yield the best damping
performance in this example, probably due to the fact that the
static response is not amplified. Considering now the receptance
function from a disturbance force to the tip displacement, an
equal-peak design is better approached. First, the static response

Figure 8. FRFs of the numerical beam. Uncontrolled ( ), PPF

controller accounting for higher-order modes ( ), or not ( ).

Figure 9. FRFs between the structural response and the external

disturbance voltage of the numerical beam controlled by a PPF

with different gains (uncontrolled response: ). Gain variations

of g = 0.85gopt ( ), g = gopt ( ), and g = 1.046gopt = gmax ( ).
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is increased as it is typical for the controller. Second, as already
mentioned before, the influence of the higher-order modes is
smaller at this input location. In this transfer function, the
theoretical developments from the beforehand discussed SDOF
system can be reproduced, that is, the controller with the optimal
gain leads to the best damping performance.

5.5. Comparison with the fixed-points method

Figure 10 compares the proposed tuning methodology with
a fixed-points tuning, both with correction for the higher
modes. The former is found to be slightly more effective,
increasing the damping performance by 1 dB. In addition,
considering Figure 10(b), the two peaks of the system with
the H∞-based controller are better balanced. Based on these
results, it can be stated that the gopt found in equation (23)
and the consideration of the higher-order modes does not
only lead to an enhancement of the exact but also of the
fixed-points tuning rule in the MDOF case. While the

difference between the two methods in terms of perfor-
mance (about 1 dB) might not be substantial, the method
proposed in this work provides a mathematically exact
solution (for the SDOF case) with an optimal gain value,
including an expression of the receptance amplitude.

6. Experimental demonstration on
a cantilever beam

6.1. Experimental setup

The structure of interest corresponds to the beam used during
the numerical simulations. Figure 11 shows the experimental
setup. One piezoelectric patch located next to the clamping was
used as an actuator while the patch next to it was used to excite
the structure with a disturbance voltage. The patches on the
opposite side were used as sensors. Sensors 1 and 2 correspond
to collocated and non-collocated configurations, respectively.
The amplitudes of the actuator and disturbances voltages were
increased by a gain equal to 10 with a voltage amplifier. These
gains are included in the graphical plots for comparisonwith the
numerical results. The digital controller unit dSPACE Micro-
LabBox was used for the excitation signals, measurements and
the implementation of the controller function. An accelerometer
measured the response at beam tip. For comparison with the
numerical simulations, this acceleration was integrated twice to
obtain the displacement.

6.2. Plant transfer functions

The system was excited from 1 Hz to 200 Hz via a multisine
signal with a root-mean-square (rms) amplitude of A = 0.5 V.
The signal featured N = 20000 of samples per period, p = 20
periods, and R = 10 realizations (Schoukens et al., 2016). The
sampling rate was 4000 samples per second yielding in a fre-
quency resolution of 0.2 Hz. To build the FRF functions, the
measurements were averaged overP andR. Themeasured plant
transfer functions are displayed in Figure 12. The first resonance
frequency at 23.2 Hz was targeted by the controller. The in-
fluence of the second and third modes at 44.8 Hz and 146 Hz,
respectively, was taken into account for the tuning. Based on the

Figure 10. FRFs of the numerical beam. Uncontrolled ( ),

controlled by a PPF controller tuning using H∞ rule ( ), or the

fixed-points method ( ).

Figure 11. Experimental setup.
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measured plant transfer functions, a state-space model was built
using the MATLAB functions tfest and tf2ss. Figure 12 reveals
that the FRF of the plant transfer function features small am-
plitudes before the first resonance in the non-collocated setup
configuration, in line with the numerical simulations (cf.
Figure 6). Both setups provide an alternating pole-zero pattern
of the plant transfer functions. Comparing Figures 6 and 12, we
note that there was a good agreement between the natural
frequencies of the numerically obtained and experimentally
identified open-loop plant transfer functions.

6.3. Damping performance

The PPF controller parameters were derived based on the
identified state-space model. The disturbance signal had an
rms amplitude of A = 0.5 V from 1 Hz to 200 Hz and the
signal featured a 100,000 samples per period, 20 periods, and
10 realizations. The sampling rate was 10,000 samples per
second yielding a frequency resolution of 0.1 Hz. Figure 13
presents the FRFs between the measured displacement and
the disturbance voltage of the uncontrolled and controlled
systems. The controller reduces the amplitude of the first
resonance peak by 36 dB and 30 dB in the collocated and
non-collocated cases, respectively. Due to the influence of the
higher-order modes and possibly also of the static response,
the expected two resonance peaks cannot clearly be seen in
the FRF of the collocated setup. As already observed in the
numerical simulations, the static response is strongly (not)
amplified in the non-collocated (collocated) case. Overall, the
performance of the PPF controller tuned with the H∞ tuning

Figure 13. FRFs between the voltage actuator and voltage sensor

of the experimental cantilever beam for the uncontrolled case

( ) and controlled by a PPF controller accounting for the in-

fluence of higher-order modes in a collocated ( ) and a non-

collocated ( ) setup.

Figure 14. FRFs between the disturbance voltage and the tip

displacement of the experimental cantilever beam for the un-

controlled case ( ) and controlled by a PPF controller tuned

with exact H∞ rules ( ) and with a fixed-points tuning ( ).

Figure 12. FRFs and phase evolutions between the voltage ac-

tuator and voltage sensor of the experimental cantilever beam in

a collocated ( ) and a non-collocated ( ) setup.
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rules can be regarded as highly satisfactory. Moreover, the
controlled system exhibits phase margins of �19.46° and
61.03° in the collocated and non-collocated cases, re-
spectively (where a negative stability margin does not imply
instability, as in Figure 4).

6.4. Comparison with the fixed-points method

Figure 14 evidences that both controllers lead to a satisfactory
amplitude reduction, reducing the resonance amplitude by
36.5 dB (exact tuning rule) or 35.80 dB (fixed-points method).
For the fixed-points method, two unbalanced resonance peaks
appear around the resonance frequency. For the exact tuning
rule, there is a single, more strongly damped resonance peak.

6.5. Gain variations

Gain variations close to the value gopt are presented in
Figure 15(a). The close-up shows that the resonance

amplitude is more reduced using gmax instead of gopt. Ex-
perimental uncertainties might explain this discrepancy
with the theoretical developments, especially since gopt and
gmax are close to each other. Larger gain variations are
shown in Figure 15(b). Damping performance is clearly the
most effective close to gopt. For gains significantly lower
than this value, two resonance peaks are visible. This may
be due to the fact that the resonance amplitude is greater
than the static response.

As a final remark, we mention that taking the higher-
order modes into account was not only essential for optimal
damping but also to guarantee the controller’s stability.
When the controller was tuned without the proposed cor-
rection procedure, the open-loop transfer function revealed
that the controlled system would be unstable. Thus, the PPF
controller could not have been implemented practically.

7. Conclusions and outlook

By exploiting the fact that the receptance functions of an RL
shunt with an NC and a collocated PPF controller are
equivalent, a new H∞-based tuning rule was derived for
a PPF controller. This strategy could yield a substantial
reduction of the targeted resonance amplitude, sometimes at
the cost of a growing static response. Thanks to the de-
veloped closed-form solution, this problem could be tackled
and minimized. Our methodology was first demonstrated on
an SDOF system, and its stability margins were analyzed by
means of the open-loop transfer functions of the controlled
systems. The optimal PPF controller exhibited sufficiently
large stability margins, which makes it viable in practical
applications.

Our developments also extend to the MDOF case thanks
to a procedure that accounts for the influence of higher
modes. It was shown that it is essential to include these
modes for effective vibration mitigation. A numerical study
on a cantilever beam using different actuator and sensor
combinations was conducted, followed by an experimental
verification. The outcome of these studies demonstrated the
effectiveness of the controller with phase margins ensuring
the stability of the controlled system.

The limitations of the approach were also discussed,
especially in view of the equal-peak design in the controlled
FRF. In the MDOF case, the controller performance varied
with respect to the considered transfer function. Even if it
might be possible to exactly enforce equal peaks in the
receptance function, this is beyond the scope of this work.
The presented approach provides rather a practical and
easily applicable procedure to robustly design a PPF con-
troller for an MDOF host structure.

This work establishes a basis for a new way of tuning
a PPF controller for vibration control. Future works
could include the consideration of lower modes when
a higher mode is targeted or multiple modes are con-
sidered at the same time. In addition, the softening

Figure 15. FRFs between the structural response and the external

disturbance voltage of the experimental cantilever beam controlled

by a PPF controller with different gain settings in contrast to the

uncontrolled response ( ).
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caused by the controller may decrease the frequency and
amplify the amplitude of modes with a lower frequency
than the targeted one; this effect should be further in-
vestigated. Finally, the tuning rules could also be ap-
plied to real-life applications.
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