Super-Attenuator Design Concept Integrating an Active Platform and an Inverted Pendulum

Thomas Giordano Precision Mechatronics Laboratory

March 26, 2025

Contents

- Introduction
- Model Overview
- Model Parameters
- Linearization with Simscape
- Comparison with Analytical Model
- DARM and Strain
- E-TEST
- Summary and Plan

Introduction

From the 17m Superattenuator to a Hybrid Solution

GF: Anti-Geometric Spring Filter **IPL: Inverted Pendulum Leg IPP: Inverted Pendulum Platform** ST: Standard Stage **CP:Cold Platform IM:Intermediate Mass** Mir: Mirror k: Stiffness m: Mass

150kg

ctuator

Model Overview

• Features

- Integration of both an Active Platform (AP) and an Inverted Pendulum (IP)
- Four additional stages (ST1 \rightarrow ST4) between IP and PF
- Functional height: 12 m

Modeling Approach

- Software: Simscape
- Payload from Baseline Design with:
 - Single wire connecting two bodies, attached to CoM
 - Vertical stiffness computed for the correct number of wires
 - Motivated by the development of an analytical model
 - ightarrow Easier to consider all wires at CoM

Model Parameters

• Fixed parameters:

$$l_{ST4-PF} = 2.5 m \qquad > m_{PF} = 300 k \\ l_{PF-Cage} = 0.9 m \qquad > m_{Cage} = 200 \\ l_{PF-Mar} = 1.1 m \qquad > m_{Mar} = 183 \\ l_{Mar-Mir} = 1.2 m \qquad > m_{Mir} = 183 \\ > m_{Mir} =$$

• Geometric progression for masses:

$$m_n = (1 - \rho)\rho^{n-1}M_{\text{tot}}$$

$$\rho = \left(\frac{m_{\text{PF}} + m_{\text{Cage}} + m_{\text{Mar}} + m_{\text{Mir}}}{M_{\text{tot}}}\right)^{\frac{1}{N-1}}$$

$$M_{\text{tot}} = \sum_{n=1}^N m_n = 1900 \text{ kg}$$

Model Parameters

$$l_{\rm IP-ST1} = l_{\rm ST1-ST2} = l_{\rm ST2-ST3} = l_{\rm ST3-ST4}$$

$$=\frac{12-l_{\rm ST4-PF}-l_{\rm PF-Mar}-l_{\rm Mar-Mir}}{4}$$

= 1.8 m

Current masses and Inertias

Body	Mass [kg]	I_{xx} , I_{yy} [kg m ²]	I_{zz} [kg m ²]
AP	2500	1508	2812
IP	500	282	562
ST1	339	5.6	10.6
ST2	278	4.6	8.7
ST3	229	3.8	7.2
ST4	188	3.1	5.9

Model Parameters

LIÈGE université

Stiffnesses of Different Elements

From Body	To wire/flexure	Anti- Spring	<i>k_x, k_y</i> [N/m]	<i>k_z</i> [N/m]	k_r [Nm/rad]
GND	GND - AP	no	10 ⁵	10 ⁵	$3\cdot 10^5$
AP	AP - IP Legs	no	∞	∞	$6\cdot 10^4$
IP Legs	IP Legs - IP	no	∞	∞	$6\cdot 10^4$
IP	IP - ST1	yes	∞	10 ³	10^{-3}
ST1	ST1 - ST2	yes	∞	10 ³	10 ⁻³
ST2	ST2 - ST3	yes	∞	10 ³	10^{-3}
ST3	ST3 - ST4	yes	∞	10 ³	10 ⁻³
ST4	ST4 - PF	yes	∞	10 ⁴	10^{-3}

Linearization with Simscape

- For some reasons that we do not fully understand, the linearization of the simscape model introduces errors for f > 2 Hz
- Problems for closed-loops and strain requirements
- \rightarrow Incorrect behaviour after 2 Hz
- Analytical model built with the following assumptions:
 - IP legs massless
 - Vertical modes decoupled from other diections
 - All wires connected to CoM

\rightarrow Correct shape after 2 Hz

Comparison with Analytical Model

Open-Loop Transmissibilities to Mirror (Horizontal, Vertical and Tilt-to-Horizontal)

Analytical model provides the correct shape after 2 Hz

DARM and Strain

Response to Ground Motion of the Analytical Model using the LNGS Spectra

• Closed-loop transmissibilities for

 $x_{\text{gnd}} \rightarrow x_{\text{mir}}$, $y_{r_{\text{gnd}}} \rightarrow x_{\text{mir}}$ and $z_{\text{gnd}} \rightarrow z_{\text{mir}}$

- DARM computed using a vertical to horizontal cross coupling coefficient $\frac{1}{300}$
- Strain computed using a 10 km arm length

Strain satisfying the requirements at 3 Hz

E-TEST

Suspension Model → Bridge between E-TEST & ET

CP:Cryostat+Cold Platform

CW: Counter Weight

Mir: Mirror

k: Stiffness

m: Mass

Model (12m)

Reference Solution (17m)

E-TEST Objectives

- Large mirror (100 Kg)
- Cryogenic temperature (10-20 K)
- Isolated at low frequency (0.1-10 Hz)
- Compact suspension (4.5 meters)

E-TEST feasibility strategy

E-TEST is a project funded by the Interreg Euregio Meuse-Rhine and ET2SME consortium, which allow us to capitalize on <u>existing infrastructure</u> at Centre Spatial Liège (CSL) for the construction of the facility.

E-TEST: How It Started

Hybrid (active + passive) isolation Radiative cooling

Liège Space Center

From Design Concept to Technical Drawings

- Vibration Isolator
- GAS filter
 IP platform
- 3) Marionette
- 4) IP legs
- 10) Active platform
- Cryogenic Payload
 5) Heat exchanger and cold platform
 7) 25K inner thermal shield
 8) 80K outer thermal shield

Low-Frequency Active Isolation

Angle [deg]

 \Box

Cohe

- Locking platform with the ground at low frequency using BOSEMs (below 0.1 Hz)
- Inertial control at mid frequencies (0.1 Hz to • 10 Hz)

Transfer functions from vertical actuators to their close vertical inertial sensors

Low-Frequency Active Isolation

From Modelling to Experimental Data

Contact : Haidar Lakkis (ULiege) mhlakkis@uliege.be

Low-Frequency Active Isolation

LIÈGE université

Summary and Plan

ET-LF Model

- Characteristics
 - Integration of both an AP and an IP
 - Functional height: 12 m
 - Simscape and analytical
 - ➤ Wires at CoM
 - $\succ m_{\rm IPL} = 0 \ \rm kg$
- Satisfies ET-LF strain requirements at 3 Hz
- Next steps:
 - Comparison of payload resonance frequencies with Octopus
 - Taking $m_{\rm IPL} \neq 0$ in analytical model

19

Summary and Plan

E-TEST

- 2023: 1st run with fully assembled prototype
 - 100 kg test-mass
 - Low frequency seismic isolation
 - Radiative cooling strategy
- 2024-2025
 - 100 kg Si mirror being polished
 - Improvement of sensors
 - Control strategies

E-TEST becomes CRISTAL

Appendix

Appendix

Appendix

